VEO3-Free / app.py
ginipick's picture
Update app.py
340367d verified
import types
import random
import spaces
import logging
import os
from pathlib import Path
from datetime import datetime
import re
import torch
import numpy as np
import torchaudio
from diffusers import AutoencoderKLWan, UniPCMultistepScheduler
from diffusers.utils import export_to_video
from diffusers import AutoModel
import gradio as gr
import tempfile
from huggingface_hub import hf_hub_download
import traceback
# Patch for scaled_dot_product_attention to fix enable_gqa issue
import torch.nn.functional as F
original_sdpa = F.scaled_dot_product_attention
def patched_scaled_dot_product_attention(query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False, scale=None, enable_gqa=None):
# enable_gqa ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ๋ฌด์‹œํ•˜๊ณ  ๋‚˜๋จธ์ง€ ํŒŒ๋ผ๋ฏธํ„ฐ๋งŒ ์ „๋‹ฌ
kwargs = {}
if attn_mask is not None:
kwargs['attn_mask'] = attn_mask
if dropout_p != 0.0:
kwargs['dropout_p'] = dropout_p
if is_causal:
kwargs['is_causal'] = is_causal
if scale is not None:
kwargs['scale'] = scale
return original_sdpa(query, key, value, **kwargs)
# ํŒจ์น˜ ์ ์šฉ
F.scaled_dot_product_attention = patched_scaled_dot_product_attention
from src.pipeline_wan_nag import NAGWanPipeline
from src.transformer_wan_nag import NagWanTransformer3DModel
# MMAudio imports
try:
import mmaudio
except ImportError:
os.system("pip install -e .")
import mmaudio
from mmaudio.eval_utils import (ModelConfig, all_model_cfg, generate as mmaudio_generate,
load_video, make_video, setup_eval_logging)
from mmaudio.model.flow_matching import FlowMatching
from mmaudio.model.networks import MMAudio, get_my_mmaudio
from mmaudio.model.sequence_config import SequenceConfig
from mmaudio.model.utils.features_utils import FeaturesUtils
# NAG Video Settings
MOD_VALUE = 32
DEFAULT_DURATION_SECONDS = 4
DEFAULT_STEPS = 4
DEFAULT_SEED = 2025
DEFAULT_H_SLIDER_VALUE = 480
DEFAULT_W_SLIDER_VALUE = 832
NEW_FORMULA_MAX_AREA = 480.0 * 832.0
SLIDER_MIN_H, SLIDER_MAX_H = 128, 896
SLIDER_MIN_W, SLIDER_MAX_W = 128, 896
MAX_SEED = np.iinfo(np.int32).max
FIXED_FPS = 16
MIN_FRAMES_MODEL = 8
MAX_FRAMES_MODEL = 129
DEFAULT_NAG_NEGATIVE_PROMPT = "Static, motionless, still, ugly, bad quality, worst quality, poorly drawn, low resolution, blurry, lack of details"
DEFAULT_AUDIO_NEGATIVE_PROMPT = "music, speech, voice, singing, narration"
# NAG Model Settings
MODEL_ID = "Wan-AI/Wan2.1-T2V-14B-Diffusers"
SUB_MODEL_ID = "vrgamedevgirl84/Wan14BT2VFusioniX"
SUB_MODEL_FILENAME = "Wan14BT2VFusioniX_fp16_.safetensors"
LORA_REPO_ID = "Kijai/WanVideo_comfy"
LORA_FILENAME = "Wan21_CausVid_14B_T2V_lora_rank32.safetensors"
# MMAudio Settings
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
log = logging.getLogger()
device = 'cuda'
dtype = torch.bfloat16
audio_model_config: ModelConfig = all_model_cfg['large_44k_v2']
audio_model_config.download_if_needed()
setup_eval_logging()
# Initialize NAG Video Model
try:
vae = AutoencoderKLWan.from_pretrained(MODEL_ID, subfolder="vae", torch_dtype=torch.float32)
wan_path = hf_hub_download(repo_id=SUB_MODEL_ID, filename=SUB_MODEL_FILENAME)
transformer = NagWanTransformer3DModel.from_single_file(wan_path, torch_dtype=torch.bfloat16)
pipe = NAGWanPipeline.from_pretrained(
MODEL_ID, vae=vae, transformer=transformer, torch_dtype=torch.bfloat16
)
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=5.0)
pipe.to("cuda")
pipe.transformer.__class__.attn_processors = NagWanTransformer3DModel.attn_processors
pipe.transformer.__class__.set_attn_processor = NagWanTransformer3DModel.set_attn_processor
pipe.transformer.__class__.forward = NagWanTransformer3DModel.forward
print("NAG Video Model loaded successfully!")
except Exception as e:
print(f"Error loading NAG Video Model: {e}")
pipe = None
# Initialize MMAudio Model
def get_mmaudio_model() -> tuple[MMAudio, FeaturesUtils, SequenceConfig]:
seq_cfg = audio_model_config.seq_cfg
net: MMAudio = get_my_mmaudio(audio_model_config.model_name).to(device, dtype).eval()
net.load_weights(torch.load(audio_model_config.model_path, map_location=device, weights_only=True))
log.info(f'Loaded MMAudio weights from {audio_model_config.model_path}')
feature_utils = FeaturesUtils(tod_vae_ckpt=audio_model_config.vae_path,
synchformer_ckpt=audio_model_config.synchformer_ckpt,
enable_conditions=True,
mode=audio_model_config.mode,
bigvgan_vocoder_ckpt=audio_model_config.bigvgan_16k_path,
need_vae_encoder=False)
feature_utils = feature_utils.to(device, dtype).eval()
return net, feature_utils, seq_cfg
try:
audio_net, audio_feature_utils, audio_seq_cfg = get_mmaudio_model()
print("MMAudio Model loaded successfully!")
except Exception as e:
print(f"Error loading MMAudio Model: {e}")
audio_net = None
# ๋น„๋””์˜ค ํ”„๋กฌํ”„ํŠธ๋ฅผ ์˜ค๋””์˜ค ํ”„๋กฌํ”„ํŠธ๋กœ ๋ณ€ํ™˜ํ•˜๋Š” ํ•จ์ˆ˜
def extract_audio_description(video_prompt):
"""๋น„๋””์˜ค ํ”„๋กฌํ”„ํŠธ์—์„œ ์˜ค๋””์˜ค ๊ด€๋ จ ์„ค๋ช… ์ถ”์ถœ/๋ณ€ํ™˜"""
# ํ‚ค์›Œ๋“œ ๋งคํ•‘
audio_keywords = {
'car': 'car engine sound, vehicle noise',
'porsche': 'sports car engine roar, exhaust sound',
'guitar': 'electric guitar playing, guitar music',
'concert': 'crowd cheering, live music, applause',
'motorcycle': 'motorcycle engine sound, motor rumble',
'highway': 'traffic noise, road ambience',
'rain': 'rain sounds, water drops',
'wind': 'wind blowing sound',
'ocean': 'ocean waves, water sounds',
'city': 'urban ambience, city traffic sounds',
'singer': 'singing voice, vocals',
'crowd': 'crowd noise, people talking',
'flames': 'fire crackling sound',
'pyro': 'fire whoosh, flame burst sound',
'explosion': 'explosion sound, blast',
'countryside': 'nature ambience, birds chirping',
'wheat fields': 'wind through grass, rural ambience',
'engine': 'motor sound, mechanical noise',
'flat-six engine': 'sports car engine sound',
'roaring': 'loud engine roar',
'thunderous': 'loud booming sound',
'child': 'children playing sounds',
'running': 'footsteps sound',
'woman': 'ambient sounds',
'phone': 'subtle electronic ambience',
'advertisement': 'modern ambient sounds'
}
# ๊ฐ„๋‹จํ•œ ํ‚ค์›Œ๋“œ ๊ธฐ๋ฐ˜ ๋ณ€ํ™˜
audio_descriptions = []
lower_prompt = video_prompt.lower()
for key, value in audio_keywords.items():
if key in lower_prompt:
audio_descriptions.append(value)
# ๊ธฐ๋ณธ๊ฐ’ ์„ค์ •
if not audio_descriptions:
# ํ”„๋กฌํ”„ํŠธ์— ๋ช…์‹œ์ ์ธ ์˜ค๋””์˜ค ์„ค๋ช…์ด ์žˆ๋Š”์ง€ ํ™•์ธ
if 'sound' in lower_prompt or 'audio' in lower_prompt or 'noise' in lower_prompt:
# ํ”„๋กฌํ”„ํŠธ์—์„œ ์˜ค๋””์˜ค ๊ด€๋ จ ๋ถ€๋ถ„๋งŒ ์ถ”์ถœ
audio_pattern = r'([^.]*(?:sound|audio|noise|music|voice|roar|rumble)[^.]*)'
matches = re.findall(audio_pattern, lower_prompt, re.IGNORECASE)
if matches:
return ', '.join(matches)
# ๊ธฐ๋ณธ ambient sound
return "ambient environmental sounds matching the scene"
return ', '.join(audio_descriptions)
# Audio generation function
@torch.inference_mode()
def add_audio_to_video(video_path, prompt, audio_custom_prompt, audio_negative_prompt, audio_steps, audio_cfg_strength, duration):
"""Generate and add audio to video using MMAudio"""
if audio_net is None:
print("MMAudio model not loaded, returning video without audio")
return video_path
try:
# ์ปค์Šคํ…€ ์˜ค๋””์˜ค ํ”„๋กฌํ”„ํŠธ๊ฐ€ ์žˆ์œผ๋ฉด ์‚ฌ์šฉ, ์—†์œผ๋ฉด ๋น„๋””์˜ค ํ”„๋กฌํ”„ํŠธ์—์„œ ์ถ”์ถœ
if audio_custom_prompt and audio_custom_prompt.strip():
audio_prompt = audio_custom_prompt.strip()
else:
audio_prompt = extract_audio_description(prompt)
print(f"Original prompt: {prompt}")
print(f"Audio prompt: {audio_prompt}")
rng = torch.Generator(device=device)
rng.manual_seed(random.randint(0, 2**32 - 1)) # ๋” ๋ช…ํ™•ํ•œ ๋žœ๋ค ์‹œ๋“œ
fm = FlowMatching(min_sigma=0, inference_mode='euler', num_steps=audio_steps)
video_info = load_video(video_path, duration)
clip_frames = video_info.clip_frames
sync_frames = video_info.sync_frames
duration = video_info.duration_sec
clip_frames = clip_frames.unsqueeze(0)
sync_frames = sync_frames.unsqueeze(0)
audio_seq_cfg.duration = duration
audio_net.update_seq_lengths(audio_seq_cfg.latent_seq_len, audio_seq_cfg.clip_seq_len, audio_seq_cfg.sync_seq_len)
# ํ–ฅ์ƒ๋œ ๋„ค๊ฑฐํ‹ฐ๋ธŒ ํ”„๋กฌํ”„ํŠธ
enhanced_negative = f"{audio_negative_prompt}, distortion, static noise, silence, random beeps"
audios = mmaudio_generate(clip_frames,
sync_frames, [audio_prompt], # ๋ณ€ํ™˜๋œ ์˜ค๋””์˜ค ํ”„๋กฌํ”„ํŠธ ์‚ฌ์šฉ
negative_text=[enhanced_negative],
feature_utils=audio_feature_utils,
net=audio_net,
fm=fm,
rng=rng,
cfg_strength=audio_cfg_strength)
audio = audios.float().cpu()[0]
# Create video with audio
video_with_audio_path = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4').name
make_video(video_info, video_with_audio_path, audio, sampling_rate=audio_seq_cfg.sampling_rate)
return video_with_audio_path
except Exception as e:
print(f"Error in audio generation: {e}")
traceback.print_exc()
return video_path
# Combined generation function
def get_duration(prompt, nag_negative_prompt, nag_scale, height, width, duration_seconds,
steps, seed, randomize_seed, enable_audio, audio_custom_prompt,
audio_negative_prompt, audio_steps, audio_cfg_strength):
# Calculate total duration including audio processing if enabled
video_duration = int(duration_seconds) * int(steps) * 2.25 + 5
audio_duration = 30 if enable_audio else 0 # Additional time for audio processing
return video_duration + audio_duration
@spaces.GPU(duration=get_duration)
def generate_video_with_audio(
prompt,
nag_negative_prompt, nag_scale,
height=DEFAULT_H_SLIDER_VALUE, width=DEFAULT_W_SLIDER_VALUE, duration_seconds=DEFAULT_DURATION_SECONDS,
steps=DEFAULT_STEPS,
seed=DEFAULT_SEED, randomize_seed=False,
enable_audio=True, audio_custom_prompt="",
audio_negative_prompt=DEFAULT_AUDIO_NEGATIVE_PROMPT,
audio_steps=30, audio_cfg_strength=4.5,
):
if pipe is None:
return None, DEFAULT_SEED
try:
# Generate video first
target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE)
target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE)
num_frames = np.clip(int(round(int(duration_seconds) * FIXED_FPS) + 1), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
print(f"Generating video with: prompt='{prompt}', resolution={target_w}x{target_h}, frames={num_frames}")
with torch.inference_mode():
nag_output_frames_list = pipe(
prompt=prompt,
nag_negative_prompt=nag_negative_prompt,
nag_scale=nag_scale,
nag_tau=3.5,
nag_alpha=0.5,
height=target_h, width=target_w, num_frames=num_frames,
guidance_scale=0.,
num_inference_steps=int(steps),
generator=torch.Generator(device="cuda").manual_seed(current_seed)
).frames[0]
# Save initial video without audio
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
temp_video_path = tmpfile.name
export_to_video(nag_output_frames_list, temp_video_path, fps=FIXED_FPS)
print(f"Video saved to: {temp_video_path}")
# Add audio if enabled
if enable_audio:
try:
print("Adding audio to video...")
final_video_path = add_audio_to_video(
temp_video_path,
prompt,
audio_custom_prompt,
audio_negative_prompt,
audio_steps,
audio_cfg_strength,
duration_seconds
)
# Clean up temp video
if os.path.exists(temp_video_path) and final_video_path != temp_video_path:
os.remove(temp_video_path)
print(f"Final video with audio: {final_video_path}")
except Exception as e:
log.error(f"Audio generation failed: {e}")
final_video_path = temp_video_path
else:
final_video_path = temp_video_path
return final_video_path, current_seed
except Exception as e:
print(f"Error in video generation: {e}")
return None, current_seed
# Example generation function - simplified
def set_example(prompt, nag_negative_prompt, nag_scale):
"""Set example values in the UI without triggering generation"""
return (
prompt,
nag_negative_prompt,
nag_scale,
DEFAULT_H_SLIDER_VALUE,
DEFAULT_W_SLIDER_VALUE,
DEFAULT_DURATION_SECONDS,
DEFAULT_STEPS,
DEFAULT_SEED,
True, # randomize_seed
True, # enable_audio
"", # audio_custom_prompt
DEFAULT_AUDIO_NEGATIVE_PROMPT,
30, # audio_steps
4.5 # audio_cfg_strength
)
# Examples with audio descriptions
examples = [
["Midnight highway outside a neon-lit city. A black 1973 Porsche 911 Carrera RS speeds at 120 km/h. Inside, a stylish singer-guitarist sings while driving, vintage sunburst guitar on the passenger seat. Sodium streetlights streak over the hood; RGB panels shift magenta to blue on the driver. Camera: drone dive, Russian-arm low wheel shot, interior gimbal, FPV barrel roll, overhead spiral. Neo-noir palette, rain-slick asphalt reflections, roaring flat-six engine blended with live guitar.", DEFAULT_NAG_NEGATIVE_PROMPT, 11],
["Arena rock concert packed with 20 000 fans. A flamboyant lead guitarist in leather jacket and mirrored aviators shreds a cherry-red Flying V on a thrust stage. Pyro flames shoot up on every downbeat, COโ‚‚ jets burst behind. Moving-head spotlights swirl teal and amber, follow-spots rim-light the guitarist's hair. Steadicam 360-orbit, crane shot rising over crowd, ultra-slow-motion pick attack at 1 000 fps. Film-grain teal-orange grade, thunderous crowd roar mixes with screaming guitar solo.", DEFAULT_NAG_NEGATIVE_PROMPT, 11],
["Golden-hour countryside road winding through rolling wheat fields. A man and woman ride a vintage cafรฉ-racer motorcycle, hair and scarf fluttering in the warm breeze. Drone chase shot reveals endless patchwork farmland; low slider along rear wheel captures dust trail. Sun-flare back-lights the riders, lens blooms on highlights. Soft acoustic rock underscore; engine rumble mixed at โ€“8 dB. Warm pastel color grade, gentle film-grain for nostalgic vibe.", DEFAULT_NAG_NEGATIVE_PROMPT, 11],
]
# CSS styling - Fixed for better layout
css = """
/* Right column - video output */
.video-output {
border-radius: 15px;
overflow: hidden;
box-shadow: 0 10px 30px rgba(0, 0, 0, 0.2);
width: 100% !important;
height: auto !important;
min-height: 400px;
}
/* Ensure video container is responsive */
.video-output video {
width: 100% !important;
height: auto !important;
max-height: 600px;
object-fit: contain;
display: block;
}
/* Remove any overlay or background from video container */
.video-output > div {
background: transparent !important;
padding: 0 !important;
}
/* Remove gradio's default video player overlay */
.video-output .wrap {
background: transparent !important;
}
/* Ensure no gray overlay on video controls */
.video-output video::-webkit-media-controls-enclosure {
background: transparent;
}
"""
# Gradio interface - Fixed structure
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
gr.HTML("""
<div class="container">
<h1 class="main-title">๐ŸŽฌ VEO3 Free</h1>
<p class="subtitle">Wan2.1-T2V-14B + Fast 4-step with NAG + Automatic Audio Generation</p>
</div>
""")
gr.HTML("""
<div class='container' style='display:flex; justify-content:center; gap:12px; margin-bottom: 20px;'>
<a href="https://huggingface.co/spaces/openfree/Best-AI" target="_blank">
<img src="https://img.shields.io/static/v1?label=OpenFree&message=BEST%20AI%20Services&color=%230000ff&labelColor=%23000080&logo=huggingface&logoColor=%23ffa500&style=for-the-badge" alt="OpenFree badge">
</a>
<a href="https://discord.gg/openfreeai" target="_blank">
<img src="https://img.shields.io/static/v1?label=Discord&message=Openfree%20AI&color=%230000ff&labelColor=%23800080&logo=discord&logoColor=white&style=for-the-badge" alt="Discord badge">
</a>
</div>
""")
with gr.Row(equal_height=True):
with gr.Column(scale=5):
with gr.Group(elem_classes="prompt-container"):
prompt = gr.Textbox(
label="โœจ Video Prompt (also used for audio generation)",
placeholder="Describe your video scene in detail...",
lines=3,
elem_classes="prompt-input"
)
with gr.Accordion("๐ŸŽจ Advanced Video Settings", open=False):
nag_negative_prompt = gr.Textbox(
label="Video Negative Prompt",
value=DEFAULT_NAG_NEGATIVE_PROMPT,
lines=2,
)
nag_scale = gr.Slider(
label="NAG Scale",
minimum=1.0,
maximum=20.0,
step=0.25,
value=11.0,
info="Higher values = stronger guidance"
)
with gr.Group(elem_classes="settings-panel"):
gr.Markdown("### โš™๏ธ Video Settings")
with gr.Row():
duration_seconds_input = gr.Slider(
minimum=1,
maximum=8,
step=1,
value=DEFAULT_DURATION_SECONDS,
label="๐Ÿ“ฑ Duration (seconds)",
elem_classes="slider-container"
)
steps_slider = gr.Slider(
minimum=1,
maximum=8,
step=1,
value=DEFAULT_STEPS,
label="๐Ÿ”„ Inference Steps",
elem_classes="slider-container"
)
with gr.Row():
height_input = gr.Slider(
minimum=SLIDER_MIN_H,
maximum=SLIDER_MAX_H,
step=MOD_VALUE,
value=DEFAULT_H_SLIDER_VALUE,
label=f"๐Ÿ“ Height (ร—{MOD_VALUE})",
elem_classes="slider-container"
)
width_input = gr.Slider(
minimum=SLIDER_MIN_W,
maximum=SLIDER_MAX_W,
step=MOD_VALUE,
value=DEFAULT_W_SLIDER_VALUE,
label=f"๐Ÿ“ Width (ร—{MOD_VALUE})",
elem_classes="slider-container"
)
with gr.Row():
seed_input = gr.Slider(
label="๐ŸŒฑ Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=DEFAULT_SEED,
interactive=True
)
randomize_seed_checkbox = gr.Checkbox(
label="๐ŸŽฒ Random Seed",
value=True,
interactive=True
)
with gr.Group(elem_classes="audio-settings"):
gr.Markdown("### ๐ŸŽต Audio Generation Settings")
enable_audio = gr.Checkbox(
label="๐Ÿ”Š Enable Automatic Audio Generation",
value=True,
interactive=True
)
with gr.Column(visible=True) as audio_settings_group:
audio_custom_prompt = gr.Textbox(
label="Custom Audio Prompt (Optional)",
placeholder="Leave empty to auto-generate from video prompt, or specify custom audio description (e.g., 'car engine sound, traffic noise')",
value="",
)
audio_negative_prompt = gr.Textbox(
label="Audio Negative Prompt",
value=DEFAULT_AUDIO_NEGATIVE_PROMPT,
placeholder="Elements to avoid in audio",
)
with gr.Row():
audio_steps = gr.Slider(
minimum=10,
maximum=50,
step=5,
value=30,
label="๐ŸŽš๏ธ Audio Steps",
info="More steps = better quality"
)
audio_cfg_strength = gr.Slider(
minimum=1.0,
maximum=10.0,
step=0.5,
value=4.5,
label="๐ŸŽ›๏ธ Audio Guidance",
info="Strength of prompt guidance"
)
# Toggle audio settings visibility
enable_audio.change(
fn=lambda x: gr.update(visible=x),
inputs=[enable_audio],
outputs=[audio_settings_group]
)
generate_button = gr.Button(
"๐ŸŽฌ Generate Video with Audio",
variant="primary",
elem_classes="generate-btn"
)
with gr.Column(scale=5):
video_output = gr.Video(
label="Generated Video with Audio",
autoplay=True,
interactive=False,
elem_classes="video-output",
height=600
)
gr.HTML("""
<div style="text-align: center; margin-top: 20px; color: #6b7280;">
<p>๐Ÿ’ก Tip: For better audio, use Custom Audio Prompt with sound descriptions!</p>
<p>๐ŸŽง Examples: "car engine sound", "crowd cheering", "nature ambience"</p>
</div>
""")
# Examples section moved outside of columns
with gr.Row():
gr.Markdown("### ๐ŸŽฏ Example Prompts")
gr.Examples(
examples=examples,
inputs=[prompt, nag_negative_prompt, nag_scale],
outputs=None, # Don't connect outputs to avoid index issues
cache_examples=False
)
# Connect UI elements
ui_inputs = [
prompt,
nag_negative_prompt, nag_scale,
height_input, width_input, duration_seconds_input,
steps_slider,
seed_input, randomize_seed_checkbox,
enable_audio, audio_custom_prompt, audio_negative_prompt,
audio_steps, audio_cfg_strength,
]
generate_button.click(
fn=generate_video_with_audio,
inputs=ui_inputs,
outputs=[video_output, seed_input],
)
if __name__ == "__main__":
demo.queue().launch()