Spaces:
Running
Running
File size: 10,370 Bytes
4b112ae 2e6da1f 4b112ae 8d4bef7 2e6da1f 8d4bef7 2e6da1f 8d4bef7 4b112ae 2e6da1f 4b112ae 8d4bef7 4b112ae 8d4bef7 2e6da1f 8d4bef7 2e6da1f 8d4bef7 2e6da1f 8d4bef7 4b112ae 8d4bef7 2e6da1f 4b112ae 2e6da1f 4b112ae 8d4bef7 4b112ae 2e6da1f 8d4bef7 4b112ae 2e6da1f 4b112ae 2e6da1f 4b112ae 2e6da1f 4b112ae 2e6da1f 4b112ae 2e6da1f 4b112ae 2e6da1f 4b112ae 2e6da1f 4b112ae 2e6da1f 4b112ae 2e6da1f 8d4bef7 4b112ae 2e6da1f 4b112ae 2e6da1f 8d4bef7 4b112ae 2e6da1f 4b112ae 2e6da1f 4b112ae 8d4bef7 4b112ae 2e6da1f 4b112ae 8d4bef7 4b112ae 2e6da1f 4b112ae 2e6da1f 4b112ae 2e6da1f 4b112ae 2e6da1f 4b112ae 2e6da1f 4b112ae 2e6da1f 4b112ae 2e6da1f 4b112ae 2e6da1f 4b112ae 2e6da1f 4b112ae 2e6da1f 4b112ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
# metrics/bertscore.py
"""
BERTScore helpers: scorer init, single and batch computation.
Adds precision/recall alongside F1 (UI shows F1; CSV export includes P/R too).
"""
from bert_score import BERTScorer
from functools import lru_cache
from transformers import AutoTokenizer, AutoConfig
from utils.file_utils import extract_sections, has_sections
import pandas as pd
# manual layer mapping (fallback; we also cap by config.num_hidden_layers if available)
_MANUAL_BERT_LAYERS = {
"neuralmind/bert-base-portuguese-cased": 12,
"pucpr/biobertpt-clin": 12,
"xlm-roberta-large": 24,
"medicalai/ClinicalBERT": 12,
}
# friendly label ↔ model id mapping
BERT_FRIENDLY_TO_MODEL = {
"Portuguese (Br) Bert": "neuralmind/bert-base-portuguese-cased",
"Portuguese (Br) Clinical BioBert": "pucpr/biobertpt-clin",
"Multilingual Bert ( RoBerta)": "xlm-roberta-large",
"ClinicalBERT (medicalai)": "medicalai/ClinicalBERT",
}
BERT_MODEL_TO_FRIENDLY = {v: k for k, v in BERT_FRIENDLY_TO_MODEL.items()}
_USE_RESCALE_BASELINE = False
def _safe_num_layers(model_type: str) -> int | None:
# Try to read from HF config; fallback to manual
try:
cfg = AutoConfig.from_pretrained(model_type)
if hasattr(cfg, "num_hidden_layers") and isinstance(cfg.num_hidden_layers, int):
return cfg.num_hidden_layers
except Exception:
pass
return _MANUAL_BERT_LAYERS.get(model_type)
@lru_cache(maxsize=6)
def get_bertscore_scorer(model_type: str):
lang = "pt" if any(model_type.startswith(p) for p in ("neuralmind", "pucpr")) else ""
num_layers = _safe_num_layers(model_type)
kwargs = {"lang": lang, "rescale_with_baseline": _USE_RESCALE_BASELINE}
if num_layers is not None:
kwargs["num_layers"] = num_layers
return BERTScorer(model_type=model_type, **kwargs)
def chunk_text_with_stride(text: str, tokenizer, max_len: int = 512, stride: int = 50):
ids = tokenizer.encode(text, add_special_tokens=True)
if len(ids) <= max_len:
return [tokenizer.decode(ids, skip_special_tokens=True)]
chunks, step = [], max_len - stride
for i in range(0, len(ids), step):
subset = ids[i : i + max_len]
if not subset:
break
chunks.append(tokenizer.decode(subset, skip_special_tokens=True))
if i + max_len >= len(ids):
break
return chunks
def bertscore_prec_rec_f1(reference: str, prediction: str, model_type: str):
"""
Return (precision, recall, f1) for a single reference/prediction pair.
Handles long texts by chunking and averaging the per-chunk scores.
On error, returns (None, None, None).
"""
if not reference or not prediction:
return (None, None, None)
try:
scorer = get_bertscore_scorer(model_type)
tokenizer = AutoTokenizer.from_pretrained(model_type, use_fast=True)
gen_chunks = chunk_text_with_stride(prediction, tokenizer)
ref_chunks = chunk_text_with_stride(reference, tokenizer)
paired = list(zip(gen_chunks, ref_chunks))
if not paired:
return (0.0, 0.0, 0.0)
p_vals, r_vals, f_vals = [], [], []
for gc, rc in paired:
P, R, F1 = scorer.score([gc], [rc])
p_vals.append(float(P[0]))
r_vals.append(float(R[0]))
f_vals.append(float(F1[0]))
n = float(len(p_vals))
return (sum(p_vals) / n, sum(r_vals) / n, sum(f_vals) / n)
except Exception:
return (None, None, None)
def compute_bertscore_single(reference: str, prediction: str, model_type: str, per_section: bool = False):
"""
If per_section=False: returns float global F1 (0..1) or None on error.
If per_section=True: returns dict with keys:
- bertscore_global_{p,r,f1}
- bertscore_{S,O,A,P}_{p,r,f1} (when sections exist; else None)
"""
if not reference or not prediction:
return None if not per_section else {}
try:
scorer = get_bertscore_scorer(model_type)
tokenizer = AutoTokenizer.from_pretrained(model_type, use_fast=True)
def score_pair(pred_text, ref_text):
if not pred_text or not ref_text:
return None, None, None
try:
P, R, F1 = scorer.score([pred_text], [ref_text])
return float(P[0]), float(R[0]), float(F1[0])
except Exception:
return None, None, None
# global (average over chunk pairs)
pred_chunks = chunk_text_with_stride(prediction, tokenizer)
ref_chunks = chunk_text_with_stride(reference, tokenizer)
paired = list(zip(pred_chunks, ref_chunks))
ps, rs, f1s = [], [], []
for pc, rc in paired:
p, r, f1 = score_pair(pc, rc)
if p is not None:
ps.append(p)
if r is not None:
rs.append(r)
if f1 is not None:
f1s.append(f1)
global_p = sum(ps) / len(ps) if ps else 0.0
global_r = sum(rs) / len(rs) if rs else 0.0
global_f1 = sum(f1s) / len(f1s) if f1s else 0.0
if not per_section:
return global_f1
out = {
"bertscore_global_p": global_p,
"bertscore_global_r": global_r,
"bertscore_global_f1": global_f1,
}
# per-section only if both texts have sections
if has_sections(reference) and has_sections(prediction):
sections_ref = extract_sections(reference)
sections_pred = extract_sections(prediction)
for tag in ["S", "O", "A", "P"]:
pred_sec = sections_pred.get(tag, "")
ref_sec = sections_ref.get(tag, "")
if pred_sec and ref_sec:
ps, rs, f1s = [], [], []
pred_chunks = chunk_text_with_stride(pred_sec, tokenizer)
ref_chunks = chunk_text_with_stride(ref_sec, tokenizer)
for pc, rc in zip(pred_chunks, ref_chunks):
p, r, f1 = score_pair(pc, rc)
if p is not None:
ps.append(p)
if r is not None:
rs.append(r)
if f1 is not None:
f1s.append(f1)
out[f"bertscore_{tag}_p"] = sum(ps) / len(ps) if ps else 0.0
out[f"bertscore_{tag}_r"] = sum(rs) / len(rs) if rs else 0.0
out[f"bertscore_{tag}_f1"] = sum(f1s) / len(f1s) if f1s else 0.0
else:
out[f"bertscore_{tag}_p"] = None
out[f"bertscore_{tag}_r"] = None
out[f"bertscore_{tag}_f1"] = None
else:
for tag in ["S", "O", "A", "P"]:
out[f"bertscore_{tag}_p"] = None
out[f"bertscore_{tag}_r"] = None
out[f"bertscore_{tag}_f1"] = None
return out
except Exception:
return None if not per_section else {}
def compute_batch_bertscore(df: pd.DataFrame, bert_models: list, per_section: bool = False) -> pd.DataFrame:
"""
If per_section=True and single model:
returns per-section + global BERTScore columns for {p,r,f1}.
Otherwise:
per-model global {p,r,f1} columns: bertscore_{modelshort}_{p,r,f1}
"""
if not bert_models:
return pd.DataFrame(index=df.index)
preds = df["dsc_generated_clinical_report"].astype(str).tolist()
refs = df["dsc_reference_free_text"].astype(str).tolist()
add = {}
single_model = len(bert_models) == 1
for friendly in bert_models:
model_id = BERT_FRIENDLY_TO_MODEL.get(friendly, friendly)
short = model_id.split("/")[-1].replace("-", "_")
if per_section and single_model:
col_data = {
"bertscore_global_p": [],
"bertscore_global_r": [],
"bertscore_global_f1": [],
"bertscore_S_p": [], "bertscore_S_r": [], "bertscore_S_f1": [],
"bertscore_O_p": [], "bertscore_O_r": [], "bertscore_O_f1": [],
"bertscore_A_p": [], "bertscore_A_r": [], "bertscore_A_f1": [],
"bertscore_P_p": [], "bertscore_P_r": [], "bertscore_P_f1": [],
}
for pred, ref in zip(preds, refs):
scores = compute_bertscore_single(ref, pred, model_id, per_section=True)
if not scores:
for k in col_data:
col_data[k].append(None)
else:
for k in col_data:
col_data[k].append(scores.get(k))
add.update(col_data)
else:
scorer = get_bertscore_scorer(model_id)
tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=True)
p_list, r_list, f1_list = [], [], []
for pred, ref in zip(preds, refs):
try:
pred_chunks = chunk_text_with_stride(pred, tokenizer)
ref_chunks = chunk_text_with_stride(ref, tokenizer)
paired = list(zip(pred_chunks, ref_chunks))
if not paired:
p_list.append(None); r_list.append(None); f1_list.append(None)
continue
Ps, Rs, F1s = [], [], []
for pc, rc in paired:
P, R, F1 = scorer.score([pc], [rc])
Ps.append(float(P[0])); Rs.append(float(R[0])); F1s.append(float(F1[0]))
p_list.append(sum(Ps)/len(Ps) if Ps else None)
r_list.append(sum(Rs)/len(Rs) if Rs else None)
f1_list.append(sum(F1s)/len(F1s) if F1s else None)
except Exception:
p_list.append(None); r_list.append(None); f1_list.append(None)
add[f"bertscore_{short}_p"] = p_list
add[f"bertscore_{short}_r"] = r_list
add[f"bertscore_{short}_f1"] = f1_list
return pd.DataFrame(add, index=df.index)
|