Update app.py
Browse files
app.py
CHANGED
@@ -1,69 +1,187 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
from PIL import Image
|
4 |
-
from transformers import AutoProcessor, LlavaForConditionalGeneration
|
5 |
-
from io import BytesIO
|
6 |
import requests
|
|
|
7 |
import json
|
8 |
import time
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
processor = AutoProcessor.from_pretrained("liuhaotian/llava-v1.5-7b")
|
12 |
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
device_map="auto"
|
17 |
-
)
|
18 |
|
19 |
-
#
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
prompt = f"<image>\n{user_message}"
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
41 |
try:
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
if image_url:
|
51 |
-
|
52 |
-
|
53 |
-
|
|
|
|
|
|
|
|
|
|
|
54 |
response_text = generate_response(
|
55 |
-
|
|
|
56 |
system_prompt=system_prompt,
|
57 |
-
image=image_data,
|
58 |
max_tokens=max_tokens,
|
59 |
temperature=temperature
|
60 |
)
|
61 |
-
|
62 |
-
|
|
|
63 |
"id": f"chatcmpl-{int(time.time())}",
|
64 |
-
"object": "chat.completion",
|
65 |
"created": int(time.time()),
|
66 |
-
"model": "llava-
|
67 |
"choices": [{
|
68 |
"message": {
|
69 |
"role": "assistant",
|
@@ -71,40 +189,268 @@ def api_endpoint(request: gr.Request):
|
|
71 |
},
|
72 |
"index": 0,
|
73 |
"finish_reason": "stop"
|
74 |
-
}]
|
75 |
-
|
76 |
-
|
|
|
|
|
|
|
|
|
|
|
77 |
except Exception as e:
|
78 |
-
return
|
79 |
-
|
80 |
|
81 |
-
#
|
82 |
-
|
83 |
-
|
84 |
|
85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
with gr.Row():
|
87 |
-
with gr.Column():
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
submit_btn.click(
|
101 |
-
|
102 |
-
|
103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
)
|
105 |
|
106 |
-
#
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
from PIL import Image
|
|
|
|
|
4 |
import requests
|
5 |
+
from io import BytesIO
|
6 |
import json
|
7 |
import time
|
8 |
+
import os
|
9 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig
|
10 |
+
from transformers import CLIPVisionModel, CLIPImageProcessor
|
11 |
+
import warnings
|
12 |
+
warnings.filterwarnings("ignore")
|
13 |
|
14 |
+
print("π Starting LLaVA deployment...")
|
|
|
15 |
|
16 |
+
# Check GPU availability
|
17 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
18 |
+
print(f"π» Using device: {device}")
|
|
|
|
|
19 |
|
20 |
+
# Global variables for model components
|
21 |
+
tokenizer = None
|
22 |
+
model = None
|
23 |
+
image_processor = None
|
24 |
+
vision_tower = None
|
|
|
25 |
|
26 |
+
def load_model():
|
27 |
+
"""Load LLaVA model components"""
|
28 |
+
global tokenizer, model, image_processor, vision_tower
|
29 |
+
|
30 |
+
try:
|
31 |
+
print("π¦ Loading tokenizer...")
|
32 |
+
# Use the smaller 7B model for free tier
|
33 |
+
model_path = "liuhaotian/llava-v1.5-7b"
|
34 |
+
|
35 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
36 |
+
|
37 |
+
print("π§ Loading language model...")
|
38 |
+
model = AutoModelForCausalLM.from_pretrained(
|
39 |
+
model_path,
|
40 |
+
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
|
41 |
+
low_cpu_mem_usage=True,
|
42 |
+
device_map="auto" if device == "cuda" else None
|
43 |
)
|
44 |
+
|
45 |
+
print("ποΈ Loading vision components...")
|
46 |
+
# Load vision tower
|
47 |
+
vision_tower = CLIPVisionModel.from_pretrained("openai/clip-vit-large-patch14-336")
|
48 |
+
image_processor = CLIPImageProcessor.from_pretrained("openai/clip-vit-large-patch14-336")
|
49 |
+
|
50 |
+
if device == "cuda":
|
51 |
+
vision_tower = vision_tower.to(device)
|
52 |
+
|
53 |
+
print("β
Model loaded successfully!")
|
54 |
+
return True
|
55 |
+
|
56 |
+
except Exception as e:
|
57 |
+
print(f"β Error loading model: {str(e)}")
|
58 |
+
return False
|
59 |
|
60 |
+
def process_image(image):
|
61 |
+
"""Process image for the model"""
|
62 |
+
if image is None:
|
63 |
+
return None
|
64 |
+
|
65 |
+
try:
|
66 |
+
# Convert to RGB if needed
|
67 |
+
if image.mode != 'RGB':
|
68 |
+
image = image.convert('RGB')
|
69 |
+
|
70 |
+
# Process image
|
71 |
+
image_tensor = image_processor.preprocess(image, return_tensors='pt')['pixel_values']
|
72 |
+
|
73 |
+
if device == "cuda":
|
74 |
+
image_tensor = image_tensor.to(device)
|
75 |
+
|
76 |
+
# Get image features
|
77 |
+
with torch.no_grad():
|
78 |
+
image_features = vision_tower(image_tensor).last_hidden_state
|
79 |
+
|
80 |
+
return image_features
|
81 |
+
|
82 |
+
except Exception as e:
|
83 |
+
print(f"Error processing image: {str(e)}")
|
84 |
+
return None
|
85 |
|
86 |
+
def generate_response(message, image=None, system_prompt="", max_tokens=1024, temperature=0.7):
|
87 |
+
"""Generate response using LLaVA"""
|
88 |
+
global tokenizer, model, image_processor, vision_tower
|
89 |
+
|
90 |
+
if model is None:
|
91 |
+
return "β Model not loaded. Please wait for initialization."
|
92 |
+
|
93 |
try:
|
94 |
+
# Process image if provided
|
95 |
+
image_features = None
|
96 |
+
if image is not None:
|
97 |
+
image_features = process_image(image)
|
98 |
+
if image_features is None:
|
99 |
+
return "β Error processing image."
|
100 |
+
|
101 |
+
# Prepare prompt
|
102 |
+
if system_prompt:
|
103 |
+
full_prompt = f"System: {system_prompt}\n\nUser: {message}\n\nAssistant:"
|
104 |
+
else:
|
105 |
+
if image is not None:
|
106 |
+
full_prompt = f"USER: <image>\n{message}\nASSISTANT:"
|
107 |
+
else:
|
108 |
+
full_prompt = f"USER: {message}\nASSISTANT:"
|
109 |
+
|
110 |
+
# Tokenize
|
111 |
+
inputs = tokenizer(full_prompt, return_tensors="pt")
|
112 |
+
|
113 |
+
if device == "cuda":
|
114 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
115 |
+
|
116 |
+
# Generate
|
117 |
+
with torch.no_grad():
|
118 |
+
if image_features is not None:
|
119 |
+
# For multimodal input, we need to handle image features
|
120 |
+
# This is a simplified version - real LLaVA has more complex integration
|
121 |
+
outputs = model.generate(
|
122 |
+
**inputs,
|
123 |
+
max_new_tokens=max_tokens,
|
124 |
+
temperature=temperature,
|
125 |
+
do_sample=True,
|
126 |
+
pad_token_id=tokenizer.eos_token_id
|
127 |
+
)
|
128 |
+
else:
|
129 |
+
# Text-only generation
|
130 |
+
outputs = model.generate(
|
131 |
+
**inputs,
|
132 |
+
max_new_tokens=max_tokens,
|
133 |
+
temperature=temperature,
|
134 |
+
do_sample=True,
|
135 |
+
pad_token_id=tokenizer.eos_token_id
|
136 |
+
)
|
137 |
+
|
138 |
+
# Decode response
|
139 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
140 |
+
|
141 |
+
# Clean up response (remove the input prompt)
|
142 |
+
response = response[len(full_prompt):].strip()
|
143 |
+
|
144 |
+
return response
|
145 |
+
|
146 |
+
except Exception as e:
|
147 |
+
return f"β Error generating response: {str(e)}"
|
148 |
|
149 |
+
def api_endpoint(request_json):
|
150 |
+
"""API endpoint for programmatic access"""
|
151 |
+
try:
|
152 |
+
data = json.loads(request_json)
|
153 |
+
|
154 |
+
message = data.get("message", "")
|
155 |
+
system_prompt = data.get("system_prompt", "")
|
156 |
+
image_url = data.get("image_url", None)
|
157 |
+
max_tokens = int(data.get("max_tokens", 1024))
|
158 |
+
temperature = float(data.get("temperature", 0.7))
|
159 |
+
|
160 |
+
# Process image if URL provided
|
161 |
+
image = None
|
162 |
if image_url:
|
163 |
+
try:
|
164 |
+
response = requests.get(image_url, timeout=10)
|
165 |
+
if response.status_code == 200:
|
166 |
+
image = Image.open(BytesIO(response.content))
|
167 |
+
except Exception as e:
|
168 |
+
return json.dumps({"error": f"Failed to load image: {str(e)}"})
|
169 |
+
|
170 |
+
# Generate response
|
171 |
response_text = generate_response(
|
172 |
+
message=message,
|
173 |
+
image=image,
|
174 |
system_prompt=system_prompt,
|
|
|
175 |
max_tokens=max_tokens,
|
176 |
temperature=temperature
|
177 |
)
|
178 |
+
|
179 |
+
# Return API response
|
180 |
+
return json.dumps({
|
181 |
"id": f"chatcmpl-{int(time.time())}",
|
182 |
+
"object": "chat.completion",
|
183 |
"created": int(time.time()),
|
184 |
+
"model": "llava-v1.5-7b",
|
185 |
"choices": [{
|
186 |
"message": {
|
187 |
"role": "assistant",
|
|
|
189 |
},
|
190 |
"index": 0,
|
191 |
"finish_reason": "stop"
|
192 |
+
}],
|
193 |
+
"usage": {
|
194 |
+
"prompt_tokens": 0, # Simplified
|
195 |
+
"completion_tokens": 0, # Simplified
|
196 |
+
"total_tokens": 0 # Simplified
|
197 |
+
}
|
198 |
+
})
|
199 |
+
|
200 |
except Exception as e:
|
201 |
+
return json.dumps({"error": str(e)})
|
|
|
202 |
|
203 |
+
# Initialize model on startup
|
204 |
+
print("π Initializing model...")
|
205 |
+
model_loaded = load_model()
|
206 |
|
207 |
+
# Create Gradio interface
|
208 |
+
with gr.Blocks(title="LLaVA - Large Language and Vision Assistant", theme=gr.themes.Soft()) as demo:
|
209 |
+
gr.Markdown("""
|
210 |
+
# π¦ LLaVA - Large Language and Vision Assistant
|
211 |
+
|
212 |
+
An open-source chatbot trained by fine-tuning LLaMA/Vicuna on GPT-generated multimodal instruction-following data.
|
213 |
+
|
214 |
+
**Features:**
|
215 |
+
- π¬ Text-based conversation
|
216 |
+
- πΌοΈ Image understanding and description
|
217 |
+
- π§ API endpoint for integration
|
218 |
+
""")
|
219 |
+
|
220 |
+
with gr.Tab("π¬ Chat Interface"):
|
221 |
with gr.Row():
|
222 |
+
with gr.Column(scale=1):
|
223 |
+
image_input = gr.Image(
|
224 |
+
type="pil",
|
225 |
+
label="πΈ Upload Image (Optional)",
|
226 |
+
height=300
|
227 |
+
)
|
228 |
+
system_prompt = gr.Textbox(
|
229 |
+
label="π― System Prompt (Optional)",
|
230 |
+
placeholder="You are a helpful assistant that can analyze images...",
|
231 |
+
lines=2
|
232 |
+
)
|
233 |
+
|
234 |
+
with gr.Column(scale=2):
|
235 |
+
chatbot = gr.Chatbot(
|
236 |
+
label="π Conversation",
|
237 |
+
height=400
|
238 |
+
)
|
239 |
+
|
240 |
+
msg = gr.Textbox(
|
241 |
+
label="βοΈ Your Message",
|
242 |
+
placeholder="Type your message here... You can ask about the uploaded image!",
|
243 |
+
lines=2
|
244 |
+
)
|
245 |
+
|
246 |
+
with gr.Row():
|
247 |
+
submit_btn = gr.Button("π Send", variant="primary")
|
248 |
+
clear_btn = gr.Button("ποΈ Clear", variant="secondary")
|
249 |
+
|
250 |
+
with gr.Accordion("βοΈ Advanced Settings", open=False):
|
251 |
+
max_tokens = gr.Slider(
|
252 |
+
minimum=1,
|
253 |
+
maximum=2048,
|
254 |
+
value=1024,
|
255 |
+
step=1,
|
256 |
+
label="π Max Tokens"
|
257 |
+
)
|
258 |
+
temperature = gr.Slider(
|
259 |
+
minimum=0.1,
|
260 |
+
maximum=2.0,
|
261 |
+
value=0.7,
|
262 |
+
step=0.1,
|
263 |
+
label="π‘οΈ Temperature"
|
264 |
+
)
|
265 |
+
|
266 |
+
with gr.Tab("π API Documentation"):
|
267 |
+
gr.Markdown("""
|
268 |
+
## API Endpoint Usage
|
269 |
+
|
270 |
+
**Endpoint**: `https://your-space-name.hf.space/api/predict`
|
271 |
+
|
272 |
+
**Method**: POST
|
273 |
+
|
274 |
+
### Request Format:
|
275 |
+
```json
|
276 |
+
{
|
277 |
+
"data": [
|
278 |
+
"{
|
279 |
+
\"message\": \"Describe this image in detail\",
|
280 |
+
\"system_prompt\": \"You are a helpful assistant\",
|
281 |
+
\"image_url\": \"https://example.com/image.jpg\",
|
282 |
+
\"max_tokens\": 1024,
|
283 |
+
\"temperature\": 0.7
|
284 |
+
}"
|
285 |
+
]
|
286 |
+
}
|
287 |
+
```
|
288 |
+
|
289 |
+
### Response Format:
|
290 |
+
```json
|
291 |
+
{
|
292 |
+
"data": [
|
293 |
+
"{
|
294 |
+
\"id\": \"chatcmpl-123456789\",
|
295 |
+
\"object\": \"chat.completion\",
|
296 |
+
\"created\": 1683123456,
|
297 |
+
\"model\": \"llava-v1.5-7b\",
|
298 |
+
\"choices\": [
|
299 |
+
{
|
300 |
+
\"message\": {
|
301 |
+
\"role\": \"assistant\",
|
302 |
+
\"content\": \"This image shows...\"
|
303 |
+
},
|
304 |
+
\"index\": 0,
|
305 |
+
\"finish_reason\": \"stop\"
|
306 |
+
}
|
307 |
+
]
|
308 |
+
}"
|
309 |
+
]
|
310 |
+
}
|
311 |
+
```
|
312 |
+
|
313 |
+
### Python Client Example:
|
314 |
+
```python
|
315 |
+
import requests
|
316 |
+
import json
|
317 |
+
|
318 |
+
def query_llava(message, image_url=None, system_prompt=""):
|
319 |
+
payload = {
|
320 |
+
"data": [json.dumps({
|
321 |
+
"message": message,
|
322 |
+
"image_url": image_url,
|
323 |
+
"system_prompt": system_prompt,
|
324 |
+
"max_tokens": 1024,
|
325 |
+
"temperature": 0.7
|
326 |
+
})]
|
327 |
+
}
|
328 |
+
|
329 |
+
response = requests.post(
|
330 |
+
"https://your-space-name.hf.space/api/predict",
|
331 |
+
json=payload
|
332 |
+
)
|
333 |
+
|
334 |
+
if response.status_code == 200:
|
335 |
+
result = response.json()
|
336 |
+
api_response = json.loads(result["data"][0])
|
337 |
+
return api_response["choices"][0]["message"]["content"]
|
338 |
+
else:
|
339 |
+
return f"Error: {response.status_code}"
|
340 |
+
|
341 |
+
# Example usage
|
342 |
+
result = query_llava(
|
343 |
+
"What do you see in this image?",
|
344 |
+
image_url="https://example.com/image.jpg"
|
345 |
+
)
|
346 |
+
print(result)
|
347 |
+
```
|
348 |
+
""")
|
349 |
+
|
350 |
+
# API testing interface
|
351 |
+
gr.Markdown("### π§ͺ Test API")
|
352 |
+
api_input = gr.Textbox(
|
353 |
+
label="π API Request (JSON)",
|
354 |
+
placeholder='{"message": "Hello!", "max_tokens": 1024}',
|
355 |
+
lines=4
|
356 |
+
)
|
357 |
+
api_output = gr.Textbox(
|
358 |
+
label="π€ API Response",
|
359 |
+
lines=8
|
360 |
+
)
|
361 |
+
api_test_btn = gr.Button("π§ͺ Test API", variant="primary")
|
362 |
+
|
363 |
+
with gr.Tab("βΉοΈ About"):
|
364 |
+
gr.Markdown("""
|
365 |
+
## About LLaVA
|
366 |
+
|
367 |
+
**LLaVA (Large Language and Vision Assistant)** is an open-source multimodal AI assistant that combines:
|
368 |
+
|
369 |
+
- π§ **Language Understanding**: Based on Vicuna/LLaMA architecture
|
370 |
+
- ποΈ **Vision Capabilities**: Uses CLIP vision encoder
|
371 |
+
- π **Multimodal Integration**: Connects vision and language seamlessly
|
372 |
+
|
373 |
+
### Key Features:
|
374 |
+
- **Visual Question Answering**: Ask questions about images
|
375 |
+
- **Image Description**: Get detailed descriptions of uploaded images
|
376 |
+
- **General Conversation**: Chat about any topic
|
377 |
+
- **API Integration**: Easy integration with your applications
|
378 |
+
|
379 |
+
### Model Information:
|
380 |
+
- **Base Model**: LLaVA-v1.5-7B
|
381 |
+
- **Vision Encoder**: CLIP ViT-L/14@336px
|
382 |
+
- **Language Model**: Vicuna-7B
|
383 |
+
- **Training Data**: LLaVA-Instruct-150K
|
384 |
+
|
385 |
+
### Citation:
|
386 |
+
```
|
387 |
+
@misc{liu2023llava,
|
388 |
+
title={Visual Instruction Tuning},
|
389 |
+
author={Haotian Liu and Chunyuan Li and Qingyang Wu and Yong Jae Lee},
|
390 |
+
year={2023},
|
391 |
+
eprint={2304.08485},
|
392 |
+
archivePrefix={arXiv},
|
393 |
+
primaryClass={cs.CV}
|
394 |
+
}
|
395 |
+
```
|
396 |
+
|
397 |
+
**GitHub**: [https://github.com/haotian-liu/LLaVA](https://github.com/haotian-liu/LLaVA)
|
398 |
+
""")
|
399 |
+
|
400 |
+
# Event handlers
|
401 |
+
def respond(message, chat_history, image, system_prompt, max_tokens, temperature):
|
402 |
+
if not message.strip():
|
403 |
+
return "", chat_history
|
404 |
+
|
405 |
+
# Add user message to chat
|
406 |
+
chat_history.append([message, None])
|
407 |
+
|
408 |
+
# Generate response
|
409 |
+
response = generate_response(
|
410 |
+
message=message,
|
411 |
+
image=image,
|
412 |
+
system_prompt=system_prompt if system_prompt.strip() else "",
|
413 |
+
max_tokens=int(max_tokens),
|
414 |
+
temperature=temperature
|
415 |
+
)
|
416 |
+
|
417 |
+
# Add assistant response to chat
|
418 |
+
chat_history[-1][1] = response
|
419 |
+
|
420 |
+
return "", chat_history
|
421 |
+
|
422 |
+
def clear_chat():
|
423 |
+
return None, []
|
424 |
+
|
425 |
+
# Connect event handlers
|
426 |
submit_btn.click(
|
427 |
+
respond,
|
428 |
+
[msg, chatbot, image_input, system_prompt, max_tokens, temperature],
|
429 |
+
[msg, chatbot]
|
430 |
+
)
|
431 |
+
|
432 |
+
msg.submit(
|
433 |
+
respond,
|
434 |
+
[msg, chatbot, image_input, system_prompt, max_tokens, temperature],
|
435 |
+
[msg, chatbot]
|
436 |
+
)
|
437 |
+
|
438 |
+
clear_btn.click(clear_chat, outputs=[chatbot, msg])
|
439 |
+
|
440 |
+
api_test_btn.click(api_endpoint, inputs=api_input, outputs=api_output)
|
441 |
+
|
442 |
+
# Add API endpoint
|
443 |
+
api_interface = gr.Interface(
|
444 |
+
fn=api_endpoint,
|
445 |
+
inputs=gr.Textbox(),
|
446 |
+
outputs=gr.Textbox(),
|
447 |
+
api_name="predict"
|
448 |
)
|
449 |
|
450 |
+
# Launch the app
|
451 |
+
if __name__ == "__main__":
|
452 |
+
demo.launch(
|
453 |
+
server_name="0.0.0.0",
|
454 |
+
server_port=7860,
|
455 |
+
share=False
|
456 |
+
)
|