Spaces:
Runtime error
Runtime error
fix generation bugs
Browse files
src/backend/huggingface_generate_until.py
ADDED
|
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import List, Literal, Optional, Tuple, Union
|
| 2 |
+
import torch
|
| 3 |
+
import transformers
|
| 4 |
+
|
| 5 |
+
from lm_eval.models.huggingface import HFLM
|
| 6 |
+
from lm_eval.api.registry import register_model
|
| 7 |
+
|
| 8 |
+
@register_model('hf-chat')
|
| 9 |
+
class HFLMwithChatTemplate(HFLM):
|
| 10 |
+
def __init__(self, use_chat_template=True, **kwargs):
|
| 11 |
+
super().__init__(**kwargs)
|
| 12 |
+
self.use_chat_template = use_chat_template
|
| 13 |
+
|
| 14 |
+
def tok_batch_encode(
|
| 15 |
+
self,
|
| 16 |
+
strings: List[str],
|
| 17 |
+
padding_side: str = "left",
|
| 18 |
+
left_truncate_len: int = None,
|
| 19 |
+
truncation: bool = False,
|
| 20 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 21 |
+
|
| 22 |
+
if self.use_chat_template:
|
| 23 |
+
try:
|
| 24 |
+
updated_strings = []
|
| 25 |
+
for input_string in strings:
|
| 26 |
+
messages = [
|
| 27 |
+
{"role": "user", "content": f"{input_string}"},
|
| 28 |
+
]
|
| 29 |
+
updated_string = self.tokenizer.apply_chat_template(messages, tokenize=False)
|
| 30 |
+
updated_strings.append(updated_string)
|
| 31 |
+
strings = updated_strings[:]
|
| 32 |
+
except:
|
| 33 |
+
print(f"failed to update input string with chat template: {self._model}")
|
| 34 |
+
# encode a batch of strings. converts to tensors and pads automatically, unlike tok_encode.
|
| 35 |
+
old_padding_side = self.tokenizer.padding_side
|
| 36 |
+
self.tokenizer.padding_side = padding_side
|
| 37 |
+
|
| 38 |
+
if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
|
| 39 |
+
add_special_tokens = False
|
| 40 |
+
elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
|
| 41 |
+
add_special_tokens = True
|
| 42 |
+
|
| 43 |
+
encoding = self.tokenizer(
|
| 44 |
+
strings,
|
| 45 |
+
truncation=truncation,
|
| 46 |
+
padding="longest",
|
| 47 |
+
return_tensors="pt",
|
| 48 |
+
add_special_tokens=add_special_tokens,
|
| 49 |
+
)
|
| 50 |
+
if left_truncate_len:
|
| 51 |
+
encoding["input_ids"] = encoding["input_ids"][:, -left_truncate_len:]
|
| 52 |
+
encoding["attention_mask"] = encoding["attention_mask"][
|
| 53 |
+
:, -left_truncate_len:
|
| 54 |
+
]
|
| 55 |
+
self.tokenizer.padding_side = old_padding_side
|
| 56 |
+
|
| 57 |
+
return encoding["input_ids"], encoding["attention_mask"]
|