File size: 5,177 Bytes
d792bb1
52efdfd
 
 
 
 
 
 
 
 
6145e5d
 
 
 
 
d0c5547
52efdfd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6783de4
52efdfd
 
 
 
 
 
 
d0c5547
 
d792bb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cde0927
52efdfd
d0c5547
52efdfd
 
 
0278562
 
52efdfd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0c5547
52efdfd
 
 
 
 
13b41cd
52efdfd
 
d0c5547
52efdfd
 
d0c5547
0278562
52efdfd
 
 
fa6c319
bb4adaa
3707fed
bb4adaa
d0c5547
52efdfd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90a752f
52efdfd
 
 
 
 
 
 
d950713
52efdfd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3707fed
52efdfd
d0c5547
52efdfd
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import logging
import gradio as gr
import numpy as np
import random

# import spaces #[uncomment to use ZeroGPU]
from diffusers import DiffusionPipeline
import torch

device = "cuda" if torch.cuda.is_available() else "cpu"
MODEL_REPO_IDS = ["stable-diffusion-v1-5/stable-diffusion-v1-5", 
                  "black-forest-labs/FLUX.1-dev",
                  "black-forest-labs/FLUX.1-schnell",
                  "stabilityai/sdxl-turbo", 
                  "stabilityai/stable-diffusion-xl-base-1.0",]
DEFAULT_MODEL_REPO_ID = "stabilityai/sdxl-turbo"  # Replace to the model you would like to use

if torch.cuda.is_available():
    torch_dtype = torch.float16
else:
    torch_dtype = torch.float32

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024


# @spaces.GPU #[uncomment to use ZeroGPU]
def infer(
    prompt,
    negative_prompt,
    seed,
    randomize_seed,
    width,
    height,
    guidance_scale,
    num_inference_steps,
    model_repo_ids = [DEFAULT_MODEL_REPO_ID],
    progress=gr.Progress(track_tqdm=True),
):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    generator = torch.Generator().manual_seed(seed)

    images = []
    for model_repo_id in model_repo_ids:
        try:
            image = None
            pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
            pipe = pipe.to(device)
            image = pipe(
                prompt=prompt,
                negative_prompt=negative_prompt,
                guidance_scale=guidance_scale,
                num_inference_steps=num_inference_steps,
                width=width,
                height=height,
                generator=generator,
            ).images[0]
            images.append(image)
        except Exception as e:
            logging.error(f"Error generating image using model {model_repo_id}", exc_info=e)

    return images, seed


examples = [
    "Local Pizzeria perspective from the table with a pizza and a glass of wine in focus and the background is a bit blared. Style should be as if a customer took the picture using his phone.",
    "A butcher in a jungle, cold color palette, muted colors, detailed, 4k",
    "A delicious ceviche cheesecake slice",
]

css = """
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(" # Text-to-Image Gradio Template")

        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=4,
                placeholder="Enter your prompt",
                container=False,
            )

            run_button = gr.Button("Run", scale=0, variant="primary")
        images = gr.Gallery(label="Generated Images")

        with gr.Accordion("Advanced Settings", open=False):
            
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=2,
                placeholder="people faces, text ",
                visible=False,
            )

            model_repo_ids = gr.Dropdown(
                choices=MODEL_REPO_IDS,
                multiselect = True,
                value = [MODEL_REPO_IDS[0]]
            )
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )

            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=512,  # Replace with defaults that work for your model
                )

                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=512,  # Replace with defaults that work for your model
                )

            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=10.0,
                    step=0.1,
                    value=0.0,  # Replace with defaults that work for your model
                )

                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=2,  # Replace with defaults that work for your model
                )

        gr.Examples(examples=examples, inputs=[prompt])
    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[
            prompt,
            negative_prompt,
            seed,
            randomize_seed,
            width,
            height,
            guidance_scale,
            num_inference_steps,
            model_repo_ids
        ],
        outputs=[images, seed],
    )

if __name__ == "__main__":
    demo.launch()