import logging import gradio as gr import numpy as np import random # import spaces #[uncomment to use ZeroGPU] from diffusers import DiffusionPipeline import torch device = "cuda" if torch.cuda.is_available() else "cpu" MODEL_REPO_IDS = ["stable-diffusion-v1-5/stable-diffusion-v1-5", "black-forest-labs/FLUX.1-dev", "black-forest-labs/FLUX.1-schnell", "stabilityai/sdxl-turbo", "stabilityai/stable-diffusion-xl-base-1.0",] DEFAULT_MODEL_REPO_ID = "stabilityai/sdxl-turbo" # Replace to the model you would like to use if torch.cuda.is_available(): torch_dtype = torch.float16 else: torch_dtype = torch.float32 MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 1024 # @spaces.GPU #[uncomment to use ZeroGPU] def infer( prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, model_repo_ids = [DEFAULT_MODEL_REPO_ID], progress=gr.Progress(track_tqdm=True), ): if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) images = [] for model_repo_id in model_repo_ids: try: image = None pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype) pipe = pipe.to(device) image = pipe( prompt=prompt, negative_prompt=negative_prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, width=width, height=height, generator=generator, ).images[0] images.append(image) except Exception as e: logging.error(f"Error generating image using model {model_repo_id}", exc_info=e) return images, seed examples = [ "Local Pizzeria perspective from the table with a pizza and a glass of wine in focus and the background is a bit blared. Style should be as if a customer took the picture using his phone.", "A butcher in a jungle, cold color palette, muted colors, detailed, 4k", "A delicious ceviche cheesecake slice", ] css = """ #col-container { margin: 0 auto; max-width: 640px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(" # Text-to-Image Gradio Template") with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=4, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0, variant="primary") images = gr.Gallery(label="Generated Images") with gr.Accordion("Advanced Settings", open=False): negative_prompt = gr.Text( label="Negative prompt", max_lines=2, placeholder="people faces, text ", visible=False, ) model_repo_ids = gr.Dropdown( choices=MODEL_REPO_IDS, multiselect = True, value = [MODEL_REPO_IDS[0]] ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512, # Replace with defaults that work for your model ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512, # Replace with defaults that work for your model ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance scale", minimum=0.0, maximum=10.0, step=0.1, value=0.0, # Replace with defaults that work for your model ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=2, # Replace with defaults that work for your model ) gr.Examples(examples=examples, inputs=[prompt]) gr.on( triggers=[run_button.click, prompt.submit], fn=infer, inputs=[ prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, model_repo_ids ], outputs=[images, seed], ) if __name__ == "__main__": demo.launch()