File size: 8,615 Bytes
0af5be2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a74642
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader, random_split
import pandas as pd
import numpy as np
from transformers import BertTokenizer
import os
from pose_format import Pose
import matplotlib.pyplot as plt
from matplotlib import animation
from fastdtw import fastdtw # Keep this import
from scipy.spatial.distance import cosine
from config import MAX_TEXT_LEN, TARGET_NUM_FRAMES, BATCH_SIZE, TEACHER_FORCING_RATIO, SMOOTHING_ENABLED

# ===== KEYPOINT SELECTION =====
selected_keypoint_indices = list(np.r_[0:25, 501:522, 522:543])
NUM_KEYPOINTS = len(selected_keypoint_indices)
POSE_DIM = NUM_KEYPOINTS * 3

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# ===== SMOOTHING =====
def selective_smoothing(preds):
    smoothed = preds.clone()
    body_indices = slice(0, 25 * 3)
    for t in range(1, preds.shape[1] - 1):
        smoothed[:, t, body_indices] = (
            0.25 * preds[:, t - 1, body_indices] +
            0.5 * preds[:, t, body_indices] +
            0.25 * preds[:, t + 1, body_indices]
        )
    return smoothed


# ===== HAND INDEX SETUP =====
hand_indices = list(range(15 * 3, POSE_DIM))  # hand joints = after body joints in flattened 3D vector
joint_weights = torch.ones(POSE_DIM).to(device)
joint_weights[hand_indices] *= 3.0

# ===== GLOBAL NORMALIZATION =====
def compute_global_mean_std(pose_folder, csv_file):
    data = pd.read_csv(csv_file)
    all_poses = []
    # Store valid masks separately to ensure correct normalization
    all_masks = []

    for filename in data["filename"]:
        pose_path = os.path.join(pose_folder, filename)
        with open(pose_path, "rb") as f:
            pose = Pose.read(f.read())

        keypoints = np.array(selected_keypoint_indices)
        # (T, 1, K, 3) -> (T, K, 3)
        pose_data = np.squeeze(pose.body.data, axis=1)[:, keypoints, :]
        # (T, 1, K) -> (T, K)
        confidence = np.squeeze(pose.body.confidence, axis=1)[:, keypoints]

        # Reshape to (T, K*3)
        pose_data_flat = pose_data.reshape(pose_data.shape[0], -1)
        # Reshape confidence to (T, K*3) - repeat confidence for each coordinate
        confidence_flat = np.repeat(confidence, 3, axis=1)

        # Create a mask based on confidence for the flattened data
        mask_flat = (confidence_flat > 0.5).astype(np.float32)

        # Append the full pose data and mask for interpolation later
        all_poses.append(pose_data_flat)
        all_masks.append(mask_flat)


    # Pad or interpolate all poses and masks to a fixed length (TARGET_NUM_FRAMES)
    padded_poses = []
    padded_masks = []
    for pose_data_flat, mask_flat in zip(all_poses, all_masks):
        current_frames = pose_data_flat.shape[0]
        if current_frames < TARGET_NUM_FRAMES:
            pad_len = TARGET_NUM_FRAMES - current_frames
            pose_pad = np.zeros((pad_len, POSE_DIM))
            mask_pad = np.zeros((pad_len, POSE_DIM)) # Pad mask with zeros
            padded_pose = np.concatenate([pose_data_flat, pose_pad], axis=0)
            padded_mask = np.concatenate([mask_flat, mask_pad], axis=0)
        else:
            indices = np.linspace(0, current_frames - 1, TARGET_NUM_FRAMES).astype(int)
            padded_pose = pose_data_flat[indices]
            padded_mask = mask_flat[indices]

        padded_poses.append(padded_pose)
        padded_masks.append(padded_mask)

    # Stack all padded poses and masks: (Total_Samples * TARGET_NUM_FRAMES, POSE_DIM)
    stacked_poses = np.vstack(padded_poses)
    stacked_masks = np.vstack(padded_masks)

    # Compute mean and std using the masks to only include valid points
    # Weighted average using mask as weights
    mean = np.sum(stacked_poses * stacked_masks, axis=0) / (np.sum(stacked_masks, axis=0) + 1e-8) # Add epsilon for stability
    # Compute variance, then sqrt for std
    variance = np.sum(stacked_masks * (stacked_poses - mean)**2, axis=0) / (np.sum(stacked_masks, axis=0) + 1e-8)
    std = np.sqrt(variance)

    std[std == 0] = 1e-8 # Avoid division by zero
    return mean, std

#POSE_FOLDER = "/content/drive/MyDrive/pose/words/ase"
CSV_FILE = "annotated.csv"
mean_path = "global_mean.npy"
std_path = "global_std.npy"

if os.path.exists(mean_path) and os.path.exists(std_path):
    print("Loading global mean and std from file.")
    GLOBAL_MEAN = np.load(mean_path)
    GLOBAL_STD = np.load(std_path)
else:
    print("Computing global mean and std from dataset.")
    GLOBAL_MEAN, GLOBAL_STD = compute_global_mean_std(POSE_FOLDER, CSV_FILE)
    # Save the computed mean and std
    # Ensure they are not MaskedArrays if the computation somehow produced them
    # If compute_global_mean_std is modified to return standard arrays, this is redundant but safe
    if isinstance(GLOBAL_MEAN, np.ma.MaskedArray):
         GLOBAL_MEAN = GLOBAL_MEAN.data
    if isinstance(GLOBAL_STD, np.ma.MaskedArray):
         GLOBAL_STD = GLOBAL_STD.data

    np.save(mean_path, GLOBAL_MEAN)
    np.save(std_path, GLOBAL_STD)

GLOBAL_MEAN_T = torch.tensor(GLOBAL_MEAN).float().to(device)
GLOBAL_STD_T = torch.tensor(GLOBAL_STD).float().to(device)


class TextToPoseDataset(Dataset):
    def __init__(self, csv_file, pose_folder, tokenizer, is_train=True):
        self.data = pd.read_csv(csv_file)
        self.pose_folder = pose_folder
        self.tokenizer = tokenizer
        self.is_train = is_train  # enable augment only during training

    def __len__(self):
        return len(self.data)

    def load_pose_data_and_mask(self, filename):
        pose_path = os.path.join(self.pose_folder, filename)
        with open(pose_path, "rb") as f:
            pose = Pose.read(f.read())

        keypoints = np.array(selected_keypoint_indices)
        pose_data = np.squeeze(pose.body.data, axis=1)[:, keypoints, :]
        confidence = np.squeeze(pose.body.confidence, axis=1)[:, keypoints]

        return pose_data, confidence

    def apply_augmentations(self, pose_data, confidence):
        T = pose_data.shape[0]

        # Temporal warp (resample frame indices with small noise)
        if T > TARGET_NUM_FRAMES and np.random.rand() < 0.5:
            indices = np.linspace(0, T - 1, TARGET_NUM_FRAMES)
            jitter = np.random.uniform(-0.5, 0.5, size=indices.shape)
            indices = np.clip(indices + jitter, 0, T - 1).astype(int)
            pose_data = pose_data[indices]
            confidence = confidence[indices]

        # Mirror (flip X-axis)
        if np.random.rand() < 0.3:
            pose_data[..., 0] *= -1

        # Jitter (small Gaussian noise)
        if np.random.rand() < 0.3:
            pose_data += np.random.normal(0, 0.02, pose_data.shape)

        return pose_data, confidence

    def __getitem__(self, idx):
        row = self.data.iloc[idx]
        filename = row["filename"]
        text = row["text"]

        input_ids = self.tokenizer(
            text, padding="max_length", truncation=True,
            max_length=MAX_TEXT_LEN, return_tensors="pt"
        )

        pose_data, confidence = self.load_pose_data_and_mask(filename)

        if self.is_train:
            pose_data, confidence = self.apply_augmentations(pose_data, confidence)

        # OLD Flatten
        pose_data_flat = pose_data.reshape(pose_data.shape[0], -1)
        confidence_flat = np.repeat(confidence, 3, axis=1)
        mask_flat = (confidence_flat > 0.5).astype(np.float32)

        # Pad or warp to fixed length
        current_frames = pose_data_flat.shape[0]
        if current_frames < TARGET_NUM_FRAMES:
            pad_len = TARGET_NUM_FRAMES - current_frames
            pose_pad = np.zeros((pad_len, POSE_DIM))
            mask_pad = np.zeros((pad_len, POSE_DIM))
            padded_pose = np.concatenate([pose_data_flat, pose_pad], axis=0)
            padded_mask = np.concatenate([mask_flat, mask_pad], axis=0)
        else:
            indices = np.linspace(0, current_frames - 1, TARGET_NUM_FRAMES).astype(int)
            padded_pose = pose_data_flat[indices]
            padded_mask = mask_flat[indices]

        # Normalize
        normalized_pose = (padded_pose - GLOBAL_MEAN) / GLOBAL_STD

        return (
            input_ids.input_ids.squeeze(0),
            input_ids.attention_mask.squeeze(0),
            torch.tensor(normalized_pose).float(),
            torch.tensor(padded_mask).float(),
            text
        )


def collate_fn(batch):
    input_ids, attn_masks, poses, masks, words = zip(*batch)
    return (
        torch.stack(input_ids),
        torch.stack(attn_masks),
        torch.stack(poses),
        torch.stack(masks),
        list(words)
    )