Update app.py
Browse files
app.py
CHANGED
|
@@ -13,12 +13,13 @@ import os
|
|
| 13 |
DEFAULT_TOKEN_RATE = 100
|
| 14 |
DEFAULT_SEMANTIC_VOCAB_SIZE = 16384
|
| 15 |
DEFAULT_SAMPLE_RATE = 16000
|
|
|
|
| 16 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 17 |
|
| 18 |
# Title and Description
|
| 19 |
st.title("SemantiCodec: Ultra-Low Bitrate Neural Audio Codec")
|
| 20 |
st.write("""
|
| 21 |
-
Upload your audio file, adjust the codec parameters, and compare the original and reconstructed audio.
|
| 22 |
SemantiCodec achieves high-quality audio reconstruction with ultra-low bitrates!
|
| 23 |
""")
|
| 24 |
|
|
@@ -34,7 +35,7 @@ ddim_steps = st.sidebar.slider("DDIM Sampling Steps", 10, 100, 50, step=5)
|
|
| 34 |
guidance_scale = st.sidebar.slider("CFG Guidance Scale", 0.5, 5.0, 2.0, step=0.1)
|
| 35 |
|
| 36 |
# Upload Audio File
|
| 37 |
-
uploaded_file = st.file_uploader("Upload an audio file (WAV format)", type=["wav"])
|
| 38 |
|
| 39 |
# Helper function: Plot spectrogram
|
| 40 |
def plot_spectrogram(waveform, sample_rate, title):
|
|
@@ -57,7 +58,7 @@ if uploaded_file and st.button("Run SemantiCodec"):
|
|
| 57 |
|
| 58 |
# Load audio
|
| 59 |
waveform, sample_rate = torchaudio.load(input_path)
|
| 60 |
-
|
| 61 |
# Check if resampling is needed
|
| 62 |
if sample_rate != DEFAULT_SAMPLE_RATE:
|
| 63 |
st.write(f"Resampling audio from {sample_rate} Hz to {DEFAULT_SAMPLE_RATE} Hz...")
|
|
@@ -65,12 +66,23 @@ if uploaded_file and st.button("Run SemantiCodec"):
|
|
| 65 |
waveform = resampler(waveform)
|
| 66 |
sample_rate = DEFAULT_SAMPLE_RATE # Update sample rate to 16kHz
|
| 67 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
# Convert to numpy for librosa compatibility
|
| 69 |
-
|
| 70 |
|
| 71 |
-
# Plot Original Spectrogram (16kHz resampled)
|
| 72 |
-
st.write("Original Audio Spectrogram (Resampled to
|
| 73 |
-
plot_spectrogram(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
|
| 75 |
# Initialize SemantiCodec
|
| 76 |
st.write("Initializing SemantiCodec...")
|
|
@@ -86,7 +98,7 @@ if uploaded_file and st.button("Run SemantiCodec"):
|
|
| 86 |
|
| 87 |
# Encode and Decode
|
| 88 |
st.write("Encoding and Decoding Audio...")
|
| 89 |
-
tokens = semanticodec.encode(
|
| 90 |
reconstructed_waveform = semanticodec.decode(tokens)[0, 0]
|
| 91 |
|
| 92 |
# Save reconstructed audio
|
|
@@ -101,8 +113,8 @@ if uploaded_file and st.button("Run SemantiCodec"):
|
|
| 101 |
st.write(f"Shape of Latent Code: {tokens.shape}")
|
| 102 |
|
| 103 |
# Audio Players
|
| 104 |
-
st.audio(
|
| 105 |
-
st.write("Original Audio")
|
| 106 |
st.audio(reconstructed_path, format="audio/wav")
|
| 107 |
st.write("Reconstructed Audio")
|
| 108 |
|
|
@@ -113,6 +125,5 @@ if uploaded_file and st.button("Run SemantiCodec"):
|
|
| 113 |
file_name="reconstructed_audio.wav",
|
| 114 |
)
|
| 115 |
|
| 116 |
-
|
| 117 |
# Footer
|
| 118 |
st.write("Built with [Streamlit](https://streamlit.io) and SemantiCodec")
|
|
|
|
| 13 |
DEFAULT_TOKEN_RATE = 100
|
| 14 |
DEFAULT_SEMANTIC_VOCAB_SIZE = 16384
|
| 15 |
DEFAULT_SAMPLE_RATE = 16000
|
| 16 |
+
MAX_DURATION_SECONDS = 30 # Maximum allowed duration
|
| 17 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 18 |
|
| 19 |
# Title and Description
|
| 20 |
st.title("SemantiCodec: Ultra-Low Bitrate Neural Audio Codec")
|
| 21 |
st.write("""
|
| 22 |
+
Upload your audio file (up to 30 seconds), adjust the codec parameters, and compare the original and reconstructed audio.
|
| 23 |
SemantiCodec achieves high-quality audio reconstruction with ultra-low bitrates!
|
| 24 |
""")
|
| 25 |
|
|
|
|
| 35 |
guidance_scale = st.sidebar.slider("CFG Guidance Scale", 0.5, 5.0, 2.0, step=0.1)
|
| 36 |
|
| 37 |
# Upload Audio File
|
| 38 |
+
uploaded_file = st.file_uploader("Upload an audio file (WAV format, up to 30 seconds)", type=["wav"])
|
| 39 |
|
| 40 |
# Helper function: Plot spectrogram
|
| 41 |
def plot_spectrogram(waveform, sample_rate, title):
|
|
|
|
| 58 |
|
| 59 |
# Load audio
|
| 60 |
waveform, sample_rate = torchaudio.load(input_path)
|
| 61 |
+
|
| 62 |
# Check if resampling is needed
|
| 63 |
if sample_rate != DEFAULT_SAMPLE_RATE:
|
| 64 |
st.write(f"Resampling audio from {sample_rate} Hz to {DEFAULT_SAMPLE_RATE} Hz...")
|
|
|
|
| 66 |
waveform = resampler(waveform)
|
| 67 |
sample_rate = DEFAULT_SAMPLE_RATE # Update sample rate to 16kHz
|
| 68 |
|
| 69 |
+
# Check and limit duration
|
| 70 |
+
num_samples = waveform.size(1)
|
| 71 |
+
max_samples = MAX_DURATION_SECONDS * sample_rate # 30 seconds limit
|
| 72 |
+
if num_samples > max_samples:
|
| 73 |
+
st.write(f"Truncating audio to the first {MAX_DURATION_SECONDS} seconds...")
|
| 74 |
+
waveform = waveform[:, :max_samples]
|
| 75 |
+
|
| 76 |
# Convert to numpy for librosa compatibility
|
| 77 |
+
waveform_np = waveform[0].numpy()
|
| 78 |
|
| 79 |
+
# Plot Original Spectrogram (16kHz resampled and truncated)
|
| 80 |
+
st.write(f"Original Audio Spectrogram (Resampled and limited to {MAX_DURATION_SECONDS} seconds):")
|
| 81 |
+
plot_spectrogram(waveform_np, sample_rate, f"Original Audio Spectrogram (Resampled to {DEFAULT_SAMPLE_RATE} Hz)")
|
| 82 |
+
|
| 83 |
+
# Save truncated audio for processing
|
| 84 |
+
truncated_path = os.path.join(temp_dir, "truncated_input.wav")
|
| 85 |
+
torchaudio.save(truncated_path, waveform, sample_rate)
|
| 86 |
|
| 87 |
# Initialize SemantiCodec
|
| 88 |
st.write("Initializing SemantiCodec...")
|
|
|
|
| 98 |
|
| 99 |
# Encode and Decode
|
| 100 |
st.write("Encoding and Decoding Audio...")
|
| 101 |
+
tokens = semanticodec.encode(truncated_path)
|
| 102 |
reconstructed_waveform = semanticodec.decode(tokens)[0, 0]
|
| 103 |
|
| 104 |
# Save reconstructed audio
|
|
|
|
| 113 |
st.write(f"Shape of Latent Code: {tokens.shape}")
|
| 114 |
|
| 115 |
# Audio Players
|
| 116 |
+
st.audio(truncated_path, format="audio/wav")
|
| 117 |
+
st.write("Original Audio (Truncated)")
|
| 118 |
st.audio(reconstructed_path, format="audio/wav")
|
| 119 |
st.write("Reconstructed Audio")
|
| 120 |
|
|
|
|
| 125 |
file_name="reconstructed_audio.wav",
|
| 126 |
)
|
| 127 |
|
|
|
|
| 128 |
# Footer
|
| 129 |
st.write("Built with [Streamlit](https://streamlit.io) and SemantiCodec")
|