Spaces:
Sleeping
Sleeping
Hasnan Ramadhan
commited on
Commit
·
c7b8084
1
Parent(s):
ce3a388
Update space
Browse files- app.py +361 -60
- requirements.txt +10 -1
app.py
CHANGED
@@ -1,64 +1,365 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
max_tokens,
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
-
|
20 |
-
for val in history:
|
21 |
-
if val[0]:
|
22 |
-
messages.append({"role": "user", "content": val[0]})
|
23 |
-
if val[1]:
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
-
|
26 |
-
messages.append({"role": "user", "content": message})
|
27 |
-
|
28 |
-
response = ""
|
29 |
-
|
30 |
-
for message in client.chat_completion(
|
31 |
-
messages,
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
-
|
42 |
-
|
43 |
-
"""
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
-
demo = gr.ChatInterface(
|
47 |
-
respond,
|
48 |
-
additional_inputs=[
|
49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
-
)
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
if __name__ == "__main__":
|
64 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from langgraph.graph import StateGraph
|
3 |
+
from typing import TypedDict
|
4 |
+
from langchain_community.document_loaders import PyMuPDFLoader
|
5 |
+
import requests
|
6 |
+
from groq import Groq
|
7 |
+
import os
|
8 |
+
from dotenv import load_dotenv
|
9 |
+
import tempfile
|
10 |
+
from googlesearch import search
|
11 |
+
from bs4 import BeautifulSoup
|
12 |
+
from urllib.parse import urljoin, urlparse
|
13 |
+
import re
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
+
load_dotenv()
|
16 |
+
|
17 |
+
def get_llm_response(prompt):
|
18 |
+
url = "http://192.168.181.215:8081/llms"
|
19 |
+
headers = {"Content-Type": "application/json"}
|
20 |
+
payload = {
|
21 |
+
"messages": [{"role": "user", "content": prompt}],
|
22 |
+
"max_new_tokens": 2000,
|
23 |
+
"do_sample": True,
|
24 |
+
"temperature": 0.2,
|
25 |
+
"top_k": 10,
|
26 |
+
"top_p": 0.90
|
27 |
+
}
|
28 |
+
try:
|
29 |
+
response = requests.post(url, json=payload, headers=headers)
|
30 |
+
response.raise_for_status()
|
31 |
+
data = response.json()
|
32 |
+
return {
|
33 |
+
"response": data['choices'][0]['content'],
|
34 |
+
"usage": data.get('usage', {}),
|
35 |
+
"generation_time": data.get('generation_time', None)
|
36 |
+
}
|
37 |
+
except requests.exceptions.RequestException as e:
|
38 |
+
return {
|
39 |
+
"response": f"Error occurred: {str(e)}",
|
40 |
+
"usage": {},
|
41 |
+
"generation_time": None
|
42 |
+
}
|
43 |
+
|
44 |
+
def get_groq_response(prompt):
|
45 |
+
client = Groq(api_key=os.getenv("GROQ_API_KEY"))
|
46 |
+
completion = client.chat.completions.create(
|
47 |
+
model="llama-3.1-8b-instant",
|
48 |
+
messages=[
|
49 |
+
{
|
50 |
+
"role": "user",
|
51 |
+
"content": prompt
|
52 |
+
}
|
53 |
+
]
|
54 |
+
)
|
55 |
+
return completion.choices[0].message.content
|
56 |
+
|
57 |
+
def google_search_agent(state: DocumentState) -> DocumentState:
|
58 |
+
"""Performs Google search and extracts content from results."""
|
59 |
+
if not state.get('search_query'):
|
60 |
+
return state
|
61 |
+
|
62 |
+
try:
|
63 |
+
search_results = []
|
64 |
+
# Get top 3 search results
|
65 |
+
for url in search(state['search_query'], num_results=3):
|
66 |
+
try:
|
67 |
+
response = requests.get(url, timeout=10)
|
68 |
+
response.raise_for_status()
|
69 |
+
|
70 |
+
soup = BeautifulSoup(response.content, 'html.parser')
|
71 |
+
|
72 |
+
# Remove script and style elements
|
73 |
+
for script in soup(["script", "style"]):
|
74 |
+
script.decompose()
|
75 |
+
|
76 |
+
# Get text content
|
77 |
+
text = soup.get_text()
|
78 |
+
|
79 |
+
# Clean up text
|
80 |
+
lines = (line.strip() for line in text.splitlines())
|
81 |
+
chunks = (phrase.strip() for line in lines for phrase in line.split(" "))
|
82 |
+
text = ' '.join(chunk for chunk in chunks if chunk)
|
83 |
+
|
84 |
+
# Limit text length
|
85 |
+
if len(text) > 1000:
|
86 |
+
text = text[:1000] + "..."
|
87 |
+
|
88 |
+
search_results.append({
|
89 |
+
'url': url,
|
90 |
+
'content': text,
|
91 |
+
'title': soup.title.string if soup.title else "No title"
|
92 |
+
})
|
93 |
+
except Exception as e:
|
94 |
+
print(f"Error scraping {url}: {e}")
|
95 |
+
continue
|
96 |
+
|
97 |
+
state['search_results'] = search_results
|
98 |
+
except Exception as e:
|
99 |
+
print(f"Error during search: {e}")
|
100 |
+
state['search_results'] = []
|
101 |
+
|
102 |
+
return state
|
103 |
+
|
104 |
+
def search_analyzer_agent(state: DocumentState) -> DocumentState:
|
105 |
+
"""Analyzes user query to determine if web search is needed."""
|
106 |
+
if not state.get('search_query'):
|
107 |
+
return state
|
108 |
+
|
109 |
+
# Keywords that typically indicate need for current information
|
110 |
+
search_indicators = [
|
111 |
+
'latest', 'recent', 'current', 'news', 'update', 'today', 'now',
|
112 |
+
'what is', 'who is', 'when did', 'where is', 'how to', 'definition',
|
113 |
+
'explain', 'information about', 'tell me about', 'research'
|
114 |
+
]
|
115 |
+
|
116 |
+
query_lower = state['search_query'].lower()
|
117 |
+
state['needs_search'] = any(indicator in query_lower for indicator in search_indicators)
|
118 |
+
|
119 |
+
return state
|
120 |
+
|
121 |
+
def search_response_agent(state: DocumentState) -> DocumentState:
|
122 |
+
"""Generates response based on search results."""
|
123 |
+
if not state.get('search_results'):
|
124 |
+
# Fallback to regular LLM response
|
125 |
+
llm_response = get_llm_response(state['search_query'])
|
126 |
+
state['summaries'] = [llm_response['response']]
|
127 |
+
return state
|
128 |
+
|
129 |
+
# Prepare search results for LLM
|
130 |
+
search_context = "\n\n".join([
|
131 |
+
f"Source: {result['title']} ({result['url']})\nContent: {result['content']}"
|
132 |
+
for result in state['search_results']
|
133 |
+
])
|
134 |
+
|
135 |
+
prompt = f"""Based on the following search results, provide a comprehensive and accurate answer to the user's question: "{state['search_query']}"
|
136 |
+
|
137 |
+
Search Results:
|
138 |
+
{search_context}
|
139 |
+
|
140 |
+
Please provide a well-structured response that:
|
141 |
+
1. Answers the user's question directly
|
142 |
+
2. Cites the sources when relevant
|
143 |
+
3. Is accurate and informative
|
144 |
+
4. Is concise but comprehensive
|
145 |
+
|
146 |
+
Response:"""
|
147 |
+
|
148 |
+
llm_response = get_llm_response(prompt)
|
149 |
+
state['summaries'] = [llm_response['response']]
|
150 |
+
return state
|
151 |
+
|
152 |
+
class DocumentState(TypedDict):
|
153 |
+
documents: list[dict]
|
154 |
+
summaries: list[str]
|
155 |
+
search_results: list[dict]
|
156 |
+
search_query: str
|
157 |
+
needs_search: bool
|
158 |
+
|
159 |
+
def document_extractor_agent(state: DocumentState, pdf_path: str) -> DocumentState:
|
160 |
+
"""Extracts documents from a PDF file."""
|
161 |
+
try:
|
162 |
+
loader = PyMuPDFLoader(pdf_path)
|
163 |
+
documents = loader.load()
|
164 |
+
state['documents'] = [
|
165 |
+
{
|
166 |
+
'content': doc.page_content,
|
167 |
+
'page': doc.metadata.get('page', 0) + 1,
|
168 |
+
'source': doc.metadata.get('source', 'Unknown')
|
169 |
+
} for doc in documents
|
170 |
+
]
|
171 |
+
except Exception as e:
|
172 |
+
print(f"Error loading PDF: {e}")
|
173 |
+
state['documents'] = []
|
174 |
+
return state
|
175 |
+
|
176 |
+
def document_summarizer_agent(state: DocumentState) -> DocumentState:
|
177 |
+
"""Retrieves summaries of the documents."""
|
178 |
+
truncated_docs = []
|
179 |
+
for doc in state['documents']:
|
180 |
+
content = doc['content'][:500]
|
181 |
+
truncated_docs.append(f"Page {doc['page']}: {content}")
|
182 |
+
|
183 |
+
prompt = f"""Summarize these documents in exactly 3 sentences. Include page citations (p. X).
|
184 |
+
|
185 |
+
Documents:
|
186 |
+
{chr(10).join(truncated_docs)}
|
187 |
+
|
188 |
+
Write 3 sentences with page citations with only refer from the document don't add up and jump to the conclusion."""
|
189 |
+
|
190 |
+
llm_response = get_llm_response(prompt)
|
191 |
+
summary = llm_response["response"]
|
192 |
+
state['summaries'] = [summary]
|
193 |
+
return state
|
194 |
+
|
195 |
+
def create_document_graph():
|
196 |
+
talking_documents = StateGraph(DocumentState)
|
197 |
+
talking_documents.add_node('document_extractor', document_extractor_agent)
|
198 |
+
talking_documents.add_node('document_summarizer', document_summarizer_agent)
|
199 |
+
talking_documents.set_entry_point('document_extractor')
|
200 |
+
talking_documents.add_edge('document_extractor', 'document_summarizer')
|
201 |
+
return talking_documents.compile()
|
202 |
+
|
203 |
+
def create_search_graph():
|
204 |
+
search_workflow = StateGraph(DocumentState)
|
205 |
+
search_workflow.add_node('search_analyzer', search_analyzer_agent)
|
206 |
+
search_workflow.add_node('google_search', google_search_agent)
|
207 |
+
search_workflow.add_node('search_response', search_response_agent)
|
208 |
+
search_workflow.set_entry_point('search_analyzer')
|
209 |
+
|
210 |
+
# Conditional edge based on search needs
|
211 |
+
def should_search(state):
|
212 |
+
return "search" if state.get('needs_search', False) else "response"
|
213 |
+
|
214 |
+
search_workflow.add_conditional_edges(
|
215 |
+
'search_analyzer',
|
216 |
+
should_search,
|
217 |
+
{
|
218 |
+
"search": "google_search",
|
219 |
+
"response": "search_response"
|
220 |
+
}
|
221 |
+
)
|
222 |
+
search_workflow.add_edge('google_search', 'search_response')
|
223 |
+
return search_workflow.compile()
|
224 |
+
|
225 |
+
def process_pdf_and_chat(pdf_file, message, history, system_message, max_tokens, temperature, top_p, enable_search=False):
|
226 |
+
if pdf_file is None:
|
227 |
+
return history + [(message, "Please upload a PDF file first.")]
|
228 |
+
|
229 |
+
try:
|
230 |
+
# Create a temporary file path for the uploaded PDF
|
231 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix='.pdf') as tmp_file:
|
232 |
+
tmp_file.write(pdf_file.read())
|
233 |
+
tmp_pdf_path = tmp_file.name
|
234 |
+
|
235 |
+
# Check if user wants to search for additional information
|
236 |
+
search_keywords = ['search', 'find more', 'additional info', 'more information', 'research']
|
237 |
+
if enable_search and any(keyword in message.lower() for keyword in search_keywords):
|
238 |
+
# Use search workflow for additional information
|
239 |
+
search_graph = create_search_graph()
|
240 |
+
search_state = {
|
241 |
+
'documents': [],
|
242 |
+
'summaries': [],
|
243 |
+
'search_results': [],
|
244 |
+
'search_query': message,
|
245 |
+
'needs_search': True
|
246 |
+
}
|
247 |
+
|
248 |
+
search_result = search_graph.invoke(search_state)
|
249 |
+
|
250 |
+
# Also process the PDF
|
251 |
+
def document_extractor_with_path(state: DocumentState) -> DocumentState:
|
252 |
+
return document_extractor_agent(state, tmp_pdf_path)
|
253 |
+
|
254 |
+
talking_documents = StateGraph(DocumentState)
|
255 |
+
talking_documents.add_node('document_extractor', document_extractor_with_path)
|
256 |
+
talking_documents.add_node('document_summarizer', document_summarizer_agent)
|
257 |
+
talking_documents.set_entry_point('document_extractor')
|
258 |
+
talking_documents.add_edge('document_extractor', 'document_summarizer')
|
259 |
+
pdf_graph = talking_documents.compile()
|
260 |
+
|
261 |
+
pdf_state = {'documents': [], 'summaries': []}
|
262 |
+
pdf_result = pdf_graph.invoke(pdf_state)
|
263 |
+
|
264 |
+
# Combine PDF and search results
|
265 |
+
combined_response = f"**PDF Summary:**\n{pdf_result['summaries'][0] if pdf_result['summaries'] else 'No summary available'}\n\n**Additional Information from Web:**\n{search_result['summaries'][0] if search_result['summaries'] else 'No additional information found'}"
|
266 |
+
|
267 |
+
response = combined_response
|
268 |
+
else:
|
269 |
+
# Regular PDF processing
|
270 |
+
def document_extractor_with_path(state: DocumentState) -> DocumentState:
|
271 |
+
return document_extractor_agent(state, tmp_pdf_path)
|
272 |
+
|
273 |
+
talking_documents = StateGraph(DocumentState)
|
274 |
+
talking_documents.add_node('document_extractor', document_extractor_with_path)
|
275 |
+
talking_documents.add_node('document_summarizer', document_summarizer_agent)
|
276 |
+
talking_documents.set_entry_point('document_extractor')
|
277 |
+
talking_documents.add_edge('document_extractor', 'document_summarizer')
|
278 |
+
graph = talking_documents.compile()
|
279 |
+
|
280 |
+
state = {'documents': [], 'summaries': []}
|
281 |
+
final_state = graph.invoke(state)
|
282 |
+
|
283 |
+
if final_state['summaries']:
|
284 |
+
response = final_state['summaries'][0]
|
285 |
+
else:
|
286 |
+
response = "Unable to process the PDF. Please check the file format."
|
287 |
+
|
288 |
+
# Clean up temporary file
|
289 |
+
os.unlink(tmp_pdf_path)
|
290 |
+
|
291 |
+
return history + [(message, response)]
|
292 |
+
|
293 |
+
except Exception as e:
|
294 |
+
return history + [(message, f"Error processing PDF: {str(e)}")]
|
295 |
+
|
296 |
+
def respond(message, history, system_message, max_tokens, temperature, top_p, enable_search=False):
|
297 |
+
"""Enhanced chat function with optional Google search"""
|
298 |
+
if enable_search:
|
299 |
+
# Use search workflow
|
300 |
+
search_graph = create_search_graph()
|
301 |
+
state = {
|
302 |
+
'documents': [],
|
303 |
+
'summaries': [],
|
304 |
+
'search_results': [],
|
305 |
+
'search_query': message,
|
306 |
+
'needs_search': False
|
307 |
+
}
|
308 |
+
|
309 |
+
final_state = search_graph.invoke(state)
|
310 |
+
|
311 |
+
if final_state['summaries']:
|
312 |
+
response = final_state['summaries'][0]
|
313 |
+
else:
|
314 |
+
# Fallback to regular LLM response
|
315 |
+
prompt = f"{system_message}\n\nUser: {message}"
|
316 |
+
llm_response = get_llm_response(prompt)
|
317 |
+
response = llm_response["response"]
|
318 |
+
else:
|
319 |
+
# Regular chat without search
|
320 |
+
prompt = f"{system_message}\n\nUser: {message}"
|
321 |
+
llm_response = get_llm_response(prompt)
|
322 |
+
response = llm_response["response"]
|
323 |
+
|
324 |
+
return history + [(message, response)]
|
325 |
+
|
326 |
+
# Create the Gradio interface
|
327 |
+
with gr.Blocks() as demo:
|
328 |
+
gr.Markdown("# Document Summarizer with Web Search")
|
329 |
+
gr.Markdown("Upload a PDF document and ask questions about it, or chat normally. Enable search for additional web information.")
|
330 |
+
|
331 |
+
with gr.Row():
|
332 |
+
with gr.Column(scale=1):
|
333 |
+
pdf_upload = gr.File(label="Upload PDF", file_types=[".pdf"])
|
334 |
+
enable_search = gr.Checkbox(label="Enable Google Search", value=False)
|
335 |
+
system_message = gr.Textbox(
|
336 |
+
value="You are a helpful assistant for summarizing and finding related information needed.",
|
337 |
+
label="System message"
|
338 |
+
)
|
339 |
+
max_tokens = gr.Slider(minimum=1, maximum=2000, value=512, step=1, label="Max new tokens")
|
340 |
+
temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature")
|
341 |
+
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)")
|
342 |
+
|
343 |
+
with gr.Column(scale=2):
|
344 |
+
chatbot = gr.Chatbot()
|
345 |
+
msg = gr.Textbox(label="Message")
|
346 |
+
clear = gr.Button("Clear")
|
347 |
+
|
348 |
+
def user_input(message, history):
|
349 |
+
return "", history + [(message, None)]
|
350 |
+
|
351 |
+
def bot_response(history, pdf_file, enable_search, system_message, max_tokens, temperature, top_p):
|
352 |
+
message = history[-1][0]
|
353 |
+
if pdf_file is not None:
|
354 |
+
new_history = process_pdf_and_chat(pdf_file, message, history[:-1], system_message, max_tokens, temperature, top_p, enable_search)
|
355 |
+
else:
|
356 |
+
new_history = respond(message, history[:-1], system_message, max_tokens, temperature, top_p, enable_search)
|
357 |
+
return new_history
|
358 |
+
|
359 |
+
msg.submit(user_input, [msg, chatbot], [msg, chatbot], queue=False).then(
|
360 |
+
bot_response, [chatbot, pdf_upload, enable_search, system_message, max_tokens, temperature, top_p], chatbot
|
361 |
+
)
|
362 |
+
clear.click(lambda: None, None, chatbot, queue=False)
|
363 |
|
364 |
if __name__ == "__main__":
|
365 |
+
demo.launch()
|
requirements.txt
CHANGED
@@ -1 +1,10 @@
|
|
1 |
-
huggingface_hub==0.25.2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
huggingface_hub==0.25.2
|
2 |
+
gradio
|
3 |
+
langgraph
|
4 |
+
langchain-community
|
5 |
+
requests
|
6 |
+
groq
|
7 |
+
python-dotenv
|
8 |
+
PyMuPDF
|
9 |
+
google
|
10 |
+
beautifulsoup4
|