Spaces:
				
			
			
	
			
			
		Sleeping
		
	
	
	
			
			
	
	
	
	
		
		
		Sleeping
		
	Commit 
							
							·
						
						cf1c404
	
0
								Parent(s):
							
							
Duplicate from GreenRaptor/MMS
Browse filesCo-authored-by: Souvik Majumder <[email protected]>
- .gitattributes +34 -0
- README.md +14 -0
- app.py +59 -0
- base_300m.pt +3 -0
- infer.py +436 -0
- mms_infer.py +52 -0
- requirements.txt +9 -0
    	
        .gitattributes
    ADDED
    
    | @@ -0,0 +1,34 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            *.7z filter=lfs diff=lfs merge=lfs -text
         | 
| 2 | 
            +
            *.arrow filter=lfs diff=lfs merge=lfs -text
         | 
| 3 | 
            +
            *.bin filter=lfs diff=lfs merge=lfs -text
         | 
| 4 | 
            +
            *.bz2 filter=lfs diff=lfs merge=lfs -text
         | 
| 5 | 
            +
            *.ckpt filter=lfs diff=lfs merge=lfs -text
         | 
| 6 | 
            +
            *.ftz filter=lfs diff=lfs merge=lfs -text
         | 
| 7 | 
            +
            *.gz filter=lfs diff=lfs merge=lfs -text
         | 
| 8 | 
            +
            *.h5 filter=lfs diff=lfs merge=lfs -text
         | 
| 9 | 
            +
            *.joblib filter=lfs diff=lfs merge=lfs -text
         | 
| 10 | 
            +
            *.lfs.* filter=lfs diff=lfs merge=lfs -text
         | 
| 11 | 
            +
            *.mlmodel filter=lfs diff=lfs merge=lfs -text
         | 
| 12 | 
            +
            *.model filter=lfs diff=lfs merge=lfs -text
         | 
| 13 | 
            +
            *.msgpack filter=lfs diff=lfs merge=lfs -text
         | 
| 14 | 
            +
            *.npy filter=lfs diff=lfs merge=lfs -text
         | 
| 15 | 
            +
            *.npz filter=lfs diff=lfs merge=lfs -text
         | 
| 16 | 
            +
            *.onnx filter=lfs diff=lfs merge=lfs -text
         | 
| 17 | 
            +
            *.ot filter=lfs diff=lfs merge=lfs -text
         | 
| 18 | 
            +
            *.parquet filter=lfs diff=lfs merge=lfs -text
         | 
| 19 | 
            +
            *.pb filter=lfs diff=lfs merge=lfs -text
         | 
| 20 | 
            +
            *.pickle filter=lfs diff=lfs merge=lfs -text
         | 
| 21 | 
            +
            *.pkl filter=lfs diff=lfs merge=lfs -text
         | 
| 22 | 
            +
            *.pt filter=lfs diff=lfs merge=lfs -text
         | 
| 23 | 
            +
            *.pth filter=lfs diff=lfs merge=lfs -text
         | 
| 24 | 
            +
            *.rar filter=lfs diff=lfs merge=lfs -text
         | 
| 25 | 
            +
            *.safetensors filter=lfs diff=lfs merge=lfs -text
         | 
| 26 | 
            +
            saved_model/**/* filter=lfs diff=lfs merge=lfs -text
         | 
| 27 | 
            +
            *.tar.* filter=lfs diff=lfs merge=lfs -text
         | 
| 28 | 
            +
            *.tflite filter=lfs diff=lfs merge=lfs -text
         | 
| 29 | 
            +
            *.tgz filter=lfs diff=lfs merge=lfs -text
         | 
| 30 | 
            +
            *.wasm filter=lfs diff=lfs merge=lfs -text
         | 
| 31 | 
            +
            *.xz filter=lfs diff=lfs merge=lfs -text
         | 
| 32 | 
            +
            *.zip filter=lfs diff=lfs merge=lfs -text
         | 
| 33 | 
            +
            *.zst filter=lfs diff=lfs merge=lfs -text
         | 
| 34 | 
            +
            *tfevents* filter=lfs diff=lfs merge=lfs -text
         | 
    	
        README.md
    ADDED
    
    | @@ -0,0 +1,14 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            ---
         | 
| 2 | 
            +
            title: MMS
         | 
| 3 | 
            +
            emoji: 🐠
         | 
| 4 | 
            +
            colorFrom: pink
         | 
| 5 | 
            +
            colorTo: green
         | 
| 6 | 
            +
            sdk: gradio
         | 
| 7 | 
            +
            sdk_version: 3.29.0
         | 
| 8 | 
            +
            app_file: app.py
         | 
| 9 | 
            +
            pinned: false
         | 
| 10 | 
            +
            license: cc-by-nc-4.0
         | 
| 11 | 
            +
            duplicated_from: GreenRaptor/MMS
         | 
| 12 | 
            +
            ---
         | 
| 13 | 
            +
             | 
| 14 | 
            +
            Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
         | 
    	
        app.py
    ADDED
    
    | @@ -0,0 +1,59 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import gradio as gr
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            import argparse
         | 
| 4 | 
            +
            import soundfile as sf
         | 
| 5 | 
            +
            import numpy as np
         | 
| 6 | 
            +
            import tempfile
         | 
| 7 | 
            +
            from pathlib import Path
         | 
| 8 | 
            +
            import os
         | 
| 9 | 
            +
            import subprocess
         | 
| 10 | 
            +
            import sys
         | 
| 11 | 
            +
            import re
         | 
| 12 | 
            +
             | 
| 13 | 
            +
            # from transformers import AutoProcessor, AutoModelForPreTraining
         | 
| 14 | 
            +
             | 
| 15 | 
            +
            # processor = AutoProcessor.from_pretrained("patrickvonplaten/mms-1b")
         | 
| 16 | 
            +
             | 
| 17 | 
            +
            # model = AutoModelForPreTraining.from_pretrained("patrickvonplaten/mms-1b")
         | 
| 18 | 
            +
             | 
| 19 | 
            +
            def process(audio, model, lang, format):    
         | 
| 20 | 
            +
                with tempfile.TemporaryDirectory() as tmpdir:
         | 
| 21 | 
            +
                    print(">>> preparing tmp manifest dir ...", file=sys.stderr)
         | 
| 22 | 
            +
                    tmpdir = Path(tmpdir)
         | 
| 23 | 
            +
                    with open(tmpdir / "dev.tsv", "w") as fw:
         | 
| 24 | 
            +
                        fw.write("/\n")
         | 
| 25 | 
            +
                        for audio in audio:
         | 
| 26 | 
            +
                            nsample = sf.SoundFile(audio).frames
         | 
| 27 | 
            +
                            fw.write(f"{audio}\t{nsample}\n")
         | 
| 28 | 
            +
                    with open(tmpdir / "dev.uid", "w") as fw:
         | 
| 29 | 
            +
                        fw.write(f"{audio}\n"*len(audio))
         | 
| 30 | 
            +
                    with open(tmpdir / "dev.ltr", "w") as fw:
         | 
| 31 | 
            +
                        fw.write("d u m m y | d u m m y\n"*len(audio))
         | 
| 32 | 
            +
                    with open(tmpdir / "dev.wrd", "w") as fw:
         | 
| 33 | 
            +
                        fw.write("dummy dummy\n"*len(audio))
         | 
| 34 | 
            +
                    cmd = f"""
         | 
| 35 | 
            +
                    PYTHONPATH=. PREFIX=INFER HYDRA_FULL_ERROR=1 python infer.py -m decoding.type=viterbi dataset.max_tokens=4000000 distributed_training.distributed_world_size=1 "common_eval.path='{model}'" task.data={tmpdir} dataset.gen_subset="{lang}:dev" common_eval.post_process={format} decoding.results_path={tmpdir}
         | 
| 36 | 
            +
                    """
         | 
| 37 | 
            +
                    print(">>> loading model & running inference ...", file=sys.stderr)
         | 
| 38 | 
            +
                    subprocess.run(cmd, shell=True, stdout=subprocess.DEVNULL,)
         | 
| 39 | 
            +
                    with open(tmpdir/"hypo.word") as fr:
         | 
| 40 | 
            +
                        for ii, hypo in enumerate(fr):
         | 
| 41 | 
            +
                            hypo = re.sub("\(\S+\)$", "", hypo).strip()
         | 
| 42 | 
            +
                            print(f'===============\nInput: {audio[ii]}\nOutput: {hypo}')
         | 
| 43 | 
            +
             | 
| 44 | 
            +
            def transcribe(audio):
         | 
| 45 | 
            +
                model = "base_300m.pt"
         | 
| 46 | 
            +
                lang = "eng"
         | 
| 47 | 
            +
                format = "letter"
         | 
| 48 | 
            +
                process(np.ravel(audio), model, lang, format)
         | 
| 49 | 
            +
             | 
| 50 | 
            +
            gr.Interface(
         | 
| 51 | 
            +
                title = 'MetaAI (Facebook Research) MMS (Massively Multilingual Speech) ASR', 
         | 
| 52 | 
            +
                fn=transcribe, 
         | 
| 53 | 
            +
                inputs=[
         | 
| 54 | 
            +
                    gr.inputs.Audio(source="microphone", type="filepath")
         | 
| 55 | 
            +
                ],
         | 
| 56 | 
            +
                outputs=[
         | 
| 57 | 
            +
                    "textbox"
         | 
| 58 | 
            +
                ],
         | 
| 59 | 
            +
                live=True).launch()
         | 
    	
        base_300m.pt
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:e6075f92ccac5d30d12dd86570f71392ebed15305bc74284d902df11c7ceff8c
         | 
| 3 | 
            +
            size 3808854615
         | 
    	
        infer.py
    ADDED
    
    | @@ -0,0 +1,436 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            #!/usr/bin/env python3 -u
         | 
| 2 | 
            +
            # Copyright (c) Facebook, Inc. and its affiliates.
         | 
| 3 | 
            +
            #
         | 
| 4 | 
            +
            # This source code is licensed under the MIT license found in the
         | 
| 5 | 
            +
            # LICENSE file in the root directory of this source tree.
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            """
         | 
| 8 | 
            +
            Run inference for pre-processed data with a trained model.
         | 
| 9 | 
            +
            """
         | 
| 10 | 
            +
             | 
| 11 | 
            +
            import ast
         | 
| 12 | 
            +
            import logging
         | 
| 13 | 
            +
            import math
         | 
| 14 | 
            +
            import os
         | 
| 15 | 
            +
            import sys
         | 
| 16 | 
            +
             | 
| 17 | 
            +
            import editdistance
         | 
| 18 | 
            +
            import numpy as np
         | 
| 19 | 
            +
            import torch
         | 
| 20 | 
            +
            from fairseq import checkpoint_utils, options, progress_bar, tasks, utils
         | 
| 21 | 
            +
            from fairseq.data.data_utils import post_process
         | 
| 22 | 
            +
            from fairseq.logging.meters import StopwatchMeter, TimeMeter
         | 
| 23 | 
            +
             | 
| 24 | 
            +
             | 
| 25 | 
            +
            logging.basicConfig()
         | 
| 26 | 
            +
            logging.root.setLevel(logging.INFO)
         | 
| 27 | 
            +
            logging.basicConfig(level=logging.INFO)
         | 
| 28 | 
            +
            logger = logging.getLogger(__name__)
         | 
| 29 | 
            +
             | 
| 30 | 
            +
             | 
| 31 | 
            +
            def add_asr_eval_argument(parser):
         | 
| 32 | 
            +
                parser.add_argument("--kspmodel", default=None, help="sentence piece model")
         | 
| 33 | 
            +
                parser.add_argument(
         | 
| 34 | 
            +
                    "--wfstlm", default=None, help="wfstlm on dictonary output units"
         | 
| 35 | 
            +
                )
         | 
| 36 | 
            +
                parser.add_argument(
         | 
| 37 | 
            +
                    "--rnnt_decoding_type",
         | 
| 38 | 
            +
                    default="greedy",
         | 
| 39 | 
            +
                    help="wfstlm on dictonary\
         | 
| 40 | 
            +
            output units",
         | 
| 41 | 
            +
                )
         | 
| 42 | 
            +
                try:
         | 
| 43 | 
            +
                    parser.add_argument(
         | 
| 44 | 
            +
                        "--lm-weight",
         | 
| 45 | 
            +
                        "--lm_weight",
         | 
| 46 | 
            +
                        type=float,
         | 
| 47 | 
            +
                        default=0.2,
         | 
| 48 | 
            +
                        help="weight for lm while interpolating with neural score",
         | 
| 49 | 
            +
                    )
         | 
| 50 | 
            +
                except:
         | 
| 51 | 
            +
                    pass
         | 
| 52 | 
            +
                parser.add_argument(
         | 
| 53 | 
            +
                    "--rnnt_len_penalty", default=-0.5, help="rnnt length penalty on word level"
         | 
| 54 | 
            +
                )
         | 
| 55 | 
            +
                parser.add_argument(
         | 
| 56 | 
            +
                    "--w2l-decoder",
         | 
| 57 | 
            +
                    choices=["viterbi", "kenlm", "fairseqlm"],
         | 
| 58 | 
            +
                    help="use a w2l decoder",
         | 
| 59 | 
            +
                )
         | 
| 60 | 
            +
                parser.add_argument("--lexicon", help="lexicon for w2l decoder")
         | 
| 61 | 
            +
                parser.add_argument("--unit-lm", action="store_true", help="if using a unit lm")
         | 
| 62 | 
            +
                parser.add_argument("--kenlm-model", "--lm-model", help="lm model for w2l decoder")
         | 
| 63 | 
            +
                parser.add_argument("--beam-threshold", type=float, default=25.0)
         | 
| 64 | 
            +
                parser.add_argument("--beam-size-token", type=float, default=100)
         | 
| 65 | 
            +
                parser.add_argument("--word-score", type=float, default=1.0)
         | 
| 66 | 
            +
                parser.add_argument("--unk-weight", type=float, default=-math.inf)
         | 
| 67 | 
            +
                parser.add_argument("--sil-weight", type=float, default=0.0)
         | 
| 68 | 
            +
                parser.add_argument(
         | 
| 69 | 
            +
                    "--dump-emissions",
         | 
| 70 | 
            +
                    type=str,
         | 
| 71 | 
            +
                    default=None,
         | 
| 72 | 
            +
                    help="if present, dumps emissions into this file and exits",
         | 
| 73 | 
            +
                )
         | 
| 74 | 
            +
                parser.add_argument(
         | 
| 75 | 
            +
                    "--dump-features",
         | 
| 76 | 
            +
                    type=str,
         | 
| 77 | 
            +
                    default=None,
         | 
| 78 | 
            +
                    help="if present, dumps features into this file and exits",
         | 
| 79 | 
            +
                )
         | 
| 80 | 
            +
                parser.add_argument(
         | 
| 81 | 
            +
                    "--load-emissions",
         | 
| 82 | 
            +
                    type=str,
         | 
| 83 | 
            +
                    default=None,
         | 
| 84 | 
            +
                    help="if present, loads emissions from this file",
         | 
| 85 | 
            +
                )
         | 
| 86 | 
            +
                return parser
         | 
| 87 | 
            +
             | 
| 88 | 
            +
             | 
| 89 | 
            +
            def check_args(args):
         | 
| 90 | 
            +
                # assert args.path is not None, "--path required for generation!"
         | 
| 91 | 
            +
                # assert args.results_path is not None, "--results_path required for generation!"
         | 
| 92 | 
            +
                assert (
         | 
| 93 | 
            +
                    not args.sampling or args.nbest == args.beam
         | 
| 94 | 
            +
                ), "--sampling requires --nbest to be equal to --beam"
         | 
| 95 | 
            +
                assert (
         | 
| 96 | 
            +
                    args.replace_unk is None or args.raw_text
         | 
| 97 | 
            +
                ), "--replace-unk requires a raw text dataset (--raw-text)"
         | 
| 98 | 
            +
             | 
| 99 | 
            +
             | 
| 100 | 
            +
            def get_dataset_itr(args, task, models):
         | 
| 101 | 
            +
                return task.get_batch_iterator(
         | 
| 102 | 
            +
                    dataset=task.dataset(args.gen_subset),
         | 
| 103 | 
            +
                    max_tokens=args.max_tokens,
         | 
| 104 | 
            +
                    max_sentences=args.batch_size,
         | 
| 105 | 
            +
                    max_positions=(sys.maxsize, sys.maxsize),
         | 
| 106 | 
            +
                    ignore_invalid_inputs=args.skip_invalid_size_inputs_valid_test,
         | 
| 107 | 
            +
                    required_batch_size_multiple=args.required_batch_size_multiple,
         | 
| 108 | 
            +
                    num_shards=args.num_shards,
         | 
| 109 | 
            +
                    shard_id=args.shard_id,
         | 
| 110 | 
            +
                    num_workers=args.num_workers,
         | 
| 111 | 
            +
                    data_buffer_size=args.data_buffer_size,
         | 
| 112 | 
            +
                ).next_epoch_itr(shuffle=False)
         | 
| 113 | 
            +
             | 
| 114 | 
            +
             | 
| 115 | 
            +
            def process_predictions(
         | 
| 116 | 
            +
                args, hypos, sp, tgt_dict, target_tokens, res_files, speaker, id
         | 
| 117 | 
            +
            ):
         | 
| 118 | 
            +
                for hypo in hypos[: min(len(hypos), args.nbest)]:
         | 
| 119 | 
            +
                    hyp_pieces = tgt_dict.string(hypo["tokens"].int().cpu())
         | 
| 120 | 
            +
             | 
| 121 | 
            +
                    if "words" in hypo:
         | 
| 122 | 
            +
                        hyp_words = " ".join(hypo["words"])
         | 
| 123 | 
            +
                    else:
         | 
| 124 | 
            +
                        hyp_words = post_process(hyp_pieces, args.post_process)
         | 
| 125 | 
            +
             | 
| 126 | 
            +
                    if res_files is not None:
         | 
| 127 | 
            +
                        print(
         | 
| 128 | 
            +
                            "{} ({}-{})".format(hyp_pieces, speaker, id),
         | 
| 129 | 
            +
                            file=res_files["hypo.units"],
         | 
| 130 | 
            +
                        )
         | 
| 131 | 
            +
                        print(
         | 
| 132 | 
            +
                            "{} ({}-{})".format(hyp_words, speaker, id),
         | 
| 133 | 
            +
                            file=res_files["hypo.words"],
         | 
| 134 | 
            +
                        )
         | 
| 135 | 
            +
             | 
| 136 | 
            +
                    tgt_pieces = tgt_dict.string(target_tokens)
         | 
| 137 | 
            +
                    tgt_words = post_process(tgt_pieces, args.post_process)
         | 
| 138 | 
            +
             | 
| 139 | 
            +
                    if res_files is not None:
         | 
| 140 | 
            +
                        print(
         | 
| 141 | 
            +
                            "{} ({}-{})".format(tgt_pieces, speaker, id),
         | 
| 142 | 
            +
                            file=res_files["ref.units"],
         | 
| 143 | 
            +
                        )
         | 
| 144 | 
            +
                        print(
         | 
| 145 | 
            +
                            "{} ({}-{})".format(tgt_words, speaker, id), file=res_files["ref.words"]
         | 
| 146 | 
            +
                        )
         | 
| 147 | 
            +
             | 
| 148 | 
            +
                    if not args.quiet:
         | 
| 149 | 
            +
                        logger.info("HYPO:" + hyp_words)
         | 
| 150 | 
            +
                        logger.info("TARGET:" + tgt_words)
         | 
| 151 | 
            +
                        logger.info("___________________")
         | 
| 152 | 
            +
             | 
| 153 | 
            +
                    hyp_words = hyp_words.split()
         | 
| 154 | 
            +
                    tgt_words = tgt_words.split()
         | 
| 155 | 
            +
                    return editdistance.eval(hyp_words, tgt_words), len(tgt_words)
         | 
| 156 | 
            +
             | 
| 157 | 
            +
             | 
| 158 | 
            +
            def prepare_result_files(args):
         | 
| 159 | 
            +
                def get_res_file(file_prefix):
         | 
| 160 | 
            +
                    if args.num_shards > 1:
         | 
| 161 | 
            +
                        file_prefix = f"{args.shard_id}_{file_prefix}"
         | 
| 162 | 
            +
                    path = os.path.join(
         | 
| 163 | 
            +
                        args.results_path,
         | 
| 164 | 
            +
                        "{}-{}-{}.txt".format(
         | 
| 165 | 
            +
                            file_prefix, os.path.basename(args.path), args.gen_subset
         | 
| 166 | 
            +
                        ),
         | 
| 167 | 
            +
                    )
         | 
| 168 | 
            +
                    return open(path, "w", buffering=1)
         | 
| 169 | 
            +
             | 
| 170 | 
            +
                if not args.results_path:
         | 
| 171 | 
            +
                    return None
         | 
| 172 | 
            +
             | 
| 173 | 
            +
                return {
         | 
| 174 | 
            +
                    "hypo.words": get_res_file("hypo.word"),
         | 
| 175 | 
            +
                    "hypo.units": get_res_file("hypo.units"),
         | 
| 176 | 
            +
                    "ref.words": get_res_file("ref.word"),
         | 
| 177 | 
            +
                    "ref.units": get_res_file("ref.units"),
         | 
| 178 | 
            +
                }
         | 
| 179 | 
            +
             | 
| 180 | 
            +
             | 
| 181 | 
            +
            def optimize_models(args, use_cuda, models):
         | 
| 182 | 
            +
                """Optimize ensemble for generation"""
         | 
| 183 | 
            +
                for model in models:
         | 
| 184 | 
            +
                    model.make_generation_fast_(
         | 
| 185 | 
            +
                        beamable_mm_beam_size=None if args.no_beamable_mm else args.beam,
         | 
| 186 | 
            +
                        need_attn=args.print_alignment,
         | 
| 187 | 
            +
                    )
         | 
| 188 | 
            +
                    if args.fp16:
         | 
| 189 | 
            +
                        model.half()
         | 
| 190 | 
            +
                    if use_cuda:
         | 
| 191 | 
            +
                        model.cuda()
         | 
| 192 | 
            +
             | 
| 193 | 
            +
             | 
| 194 | 
            +
            def apply_half(t):
         | 
| 195 | 
            +
                if t.dtype is torch.float32:
         | 
| 196 | 
            +
                    return t.to(dtype=torch.half)
         | 
| 197 | 
            +
                return t
         | 
| 198 | 
            +
             | 
| 199 | 
            +
             | 
| 200 | 
            +
            class ExistingEmissionsDecoder(object):
         | 
| 201 | 
            +
                def __init__(self, decoder, emissions):
         | 
| 202 | 
            +
                    self.decoder = decoder
         | 
| 203 | 
            +
                    self.emissions = emissions
         | 
| 204 | 
            +
             | 
| 205 | 
            +
                def generate(self, models, sample, **unused):
         | 
| 206 | 
            +
                    ids = sample["id"].cpu().numpy()
         | 
| 207 | 
            +
                    try:
         | 
| 208 | 
            +
                        emissions = np.stack(self.emissions[ids])
         | 
| 209 | 
            +
                    except:
         | 
| 210 | 
            +
                        print([x.shape for x in self.emissions[ids]])
         | 
| 211 | 
            +
                        raise Exception("invalid sizes")
         | 
| 212 | 
            +
                    emissions = torch.from_numpy(emissions)
         | 
| 213 | 
            +
                    return self.decoder.decode(emissions)
         | 
| 214 | 
            +
             | 
| 215 | 
            +
             | 
| 216 | 
            +
            def main(args, task=None, model_state=None):
         | 
| 217 | 
            +
                check_args(args)
         | 
| 218 | 
            +
             | 
| 219 | 
            +
                use_fp16 = args.fp16
         | 
| 220 | 
            +
                if args.max_tokens is None and args.batch_size is None:
         | 
| 221 | 
            +
                    args.max_tokens = 4000000
         | 
| 222 | 
            +
                logger.info(args)
         | 
| 223 | 
            +
             | 
| 224 | 
            +
                use_cuda = torch.cuda.is_available() and not args.cpu
         | 
| 225 | 
            +
             | 
| 226 | 
            +
                logger.info("| decoding with criterion {}".format(args.criterion))
         | 
| 227 | 
            +
             | 
| 228 | 
            +
                task = tasks.setup_task(args)
         | 
| 229 | 
            +
             | 
| 230 | 
            +
                # Load ensemble
         | 
| 231 | 
            +
                if args.load_emissions:
         | 
| 232 | 
            +
                    models, criterions = [], []
         | 
| 233 | 
            +
                    task.load_dataset(args.gen_subset)
         | 
| 234 | 
            +
                else:
         | 
| 235 | 
            +
                    logger.info("| loading model(s) from {}".format(args.path))
         | 
| 236 | 
            +
                    models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(
         | 
| 237 | 
            +
                        utils.split_paths(args.path, separator="\\"),
         | 
| 238 | 
            +
                        arg_overrides=ast.literal_eval(args.model_overrides),
         | 
| 239 | 
            +
                        task=task,
         | 
| 240 | 
            +
                        suffix=args.checkpoint_suffix,
         | 
| 241 | 
            +
                        strict=(args.checkpoint_shard_count == 1),
         | 
| 242 | 
            +
                        num_shards=args.checkpoint_shard_count,
         | 
| 243 | 
            +
                        state=model_state,
         | 
| 244 | 
            +
                    )
         | 
| 245 | 
            +
                    optimize_models(args, use_cuda, models)
         | 
| 246 | 
            +
                    task.load_dataset(args.gen_subset, task_cfg=saved_cfg.task)
         | 
| 247 | 
            +
             | 
| 248 | 
            +
             | 
| 249 | 
            +
                # Set dictionary
         | 
| 250 | 
            +
                tgt_dict = task.target_dictionary
         | 
| 251 | 
            +
             | 
| 252 | 
            +
                logger.info(
         | 
| 253 | 
            +
                    "| {} {} {} examples".format(
         | 
| 254 | 
            +
                        args.data, args.gen_subset, len(task.dataset(args.gen_subset))
         | 
| 255 | 
            +
                    )
         | 
| 256 | 
            +
                )
         | 
| 257 | 
            +
             | 
| 258 | 
            +
                # hack to pass transitions to W2lDecoder
         | 
| 259 | 
            +
                if args.criterion == "asg_loss":
         | 
| 260 | 
            +
                    raise NotImplementedError("asg_loss is currently not supported")
         | 
| 261 | 
            +
                    # trans = criterions[0].asg.trans.data
         | 
| 262 | 
            +
                    # args.asg_transitions = torch.flatten(trans).tolist()
         | 
| 263 | 
            +
             | 
| 264 | 
            +
                # Load dataset (possibly sharded)
         | 
| 265 | 
            +
                itr = get_dataset_itr(args, task, models)
         | 
| 266 | 
            +
             | 
| 267 | 
            +
                # Initialize generator
         | 
| 268 | 
            +
                gen_timer = StopwatchMeter()
         | 
| 269 | 
            +
             | 
| 270 | 
            +
                def build_generator(args):
         | 
| 271 | 
            +
                    w2l_decoder = getattr(args, "w2l_decoder", None)
         | 
| 272 | 
            +
                    if w2l_decoder == "viterbi":
         | 
| 273 | 
            +
                        from examples.speech_recognition.w2l_decoder import W2lViterbiDecoder
         | 
| 274 | 
            +
             | 
| 275 | 
            +
                        return W2lViterbiDecoder(args, task.target_dictionary)
         | 
| 276 | 
            +
                    elif w2l_decoder == "kenlm":
         | 
| 277 | 
            +
                        from examples.speech_recognition.w2l_decoder import W2lKenLMDecoder
         | 
| 278 | 
            +
             | 
| 279 | 
            +
                        return W2lKenLMDecoder(args, task.target_dictionary)
         | 
| 280 | 
            +
                    elif w2l_decoder == "fairseqlm":
         | 
| 281 | 
            +
                        from examples.speech_recognition.w2l_decoder import W2lFairseqLMDecoder
         | 
| 282 | 
            +
             | 
| 283 | 
            +
                        return W2lFairseqLMDecoder(args, task.target_dictionary)
         | 
| 284 | 
            +
                    else:
         | 
| 285 | 
            +
                        print(
         | 
| 286 | 
            +
                            "only flashlight decoders with (viterbi, kenlm, fairseqlm) options are supported at the moment"
         | 
| 287 | 
            +
                        )
         | 
| 288 | 
            +
             | 
| 289 | 
            +
                # please do not touch this unless you test both generate.py and infer.py with audio_pretraining task
         | 
| 290 | 
            +
                generator = build_generator(args)
         | 
| 291 | 
            +
             | 
| 292 | 
            +
                if args.load_emissions:
         | 
| 293 | 
            +
                    generator = ExistingEmissionsDecoder(
         | 
| 294 | 
            +
                        generator, np.load(args.load_emissions, allow_pickle=True)
         | 
| 295 | 
            +
                    )
         | 
| 296 | 
            +
                    logger.info("loaded emissions from " + args.load_emissions)
         | 
| 297 | 
            +
             | 
| 298 | 
            +
                num_sentences = 0
         | 
| 299 | 
            +
             | 
| 300 | 
            +
                if args.results_path is not None and not os.path.exists(args.results_path):
         | 
| 301 | 
            +
                    os.makedirs(args.results_path)
         | 
| 302 | 
            +
             | 
| 303 | 
            +
                max_source_pos = (
         | 
| 304 | 
            +
                    utils.resolve_max_positions(
         | 
| 305 | 
            +
                        task.max_positions(), *[model.max_positions() for model in models]
         | 
| 306 | 
            +
                    ),
         | 
| 307 | 
            +
                )
         | 
| 308 | 
            +
             | 
| 309 | 
            +
                if max_source_pos is not None:
         | 
| 310 | 
            +
                    max_source_pos = max_source_pos[0]
         | 
| 311 | 
            +
                    if max_source_pos is not None:
         | 
| 312 | 
            +
                        max_source_pos = max_source_pos[0] - 1
         | 
| 313 | 
            +
             | 
| 314 | 
            +
                if args.dump_emissions:
         | 
| 315 | 
            +
                    emissions = {}
         | 
| 316 | 
            +
                if args.dump_features:
         | 
| 317 | 
            +
                    features = {}
         | 
| 318 | 
            +
                    models[0].bert.proj = None
         | 
| 319 | 
            +
                else:
         | 
| 320 | 
            +
                    res_files = prepare_result_files(args)
         | 
| 321 | 
            +
                errs_t = 0
         | 
| 322 | 
            +
                lengths_t = 0
         | 
| 323 | 
            +
                with progress_bar.build_progress_bar(args, itr) as t:
         | 
| 324 | 
            +
                    wps_meter = TimeMeter()
         | 
| 325 | 
            +
                    for sample in t:
         | 
| 326 | 
            +
                        sample = utils.move_to_cuda(sample) if use_cuda else sample
         | 
| 327 | 
            +
                        if use_fp16:
         | 
| 328 | 
            +
                            sample = utils.apply_to_sample(apply_half, sample)
         | 
| 329 | 
            +
                        if "net_input" not in sample:
         | 
| 330 | 
            +
                            continue
         | 
| 331 | 
            +
             | 
| 332 | 
            +
                        prefix_tokens = None
         | 
| 333 | 
            +
                        if args.prefix_size > 0:
         | 
| 334 | 
            +
                            prefix_tokens = sample["target"][:, : args.prefix_size]
         | 
| 335 | 
            +
             | 
| 336 | 
            +
                        gen_timer.start()
         | 
| 337 | 
            +
                        if args.dump_emissions:
         | 
| 338 | 
            +
                            with torch.no_grad():
         | 
| 339 | 
            +
                                encoder_out = models[0](**sample["net_input"])
         | 
| 340 | 
            +
                                emm = models[0].get_normalized_probs(encoder_out, log_probs=True)
         | 
| 341 | 
            +
                                emm = emm.transpose(0, 1).cpu().numpy()
         | 
| 342 | 
            +
                                for i, id in enumerate(sample["id"]):
         | 
| 343 | 
            +
                                    emissions[id.item()] = emm[i]
         | 
| 344 | 
            +
                                continue
         | 
| 345 | 
            +
                        elif args.dump_features:
         | 
| 346 | 
            +
                            with torch.no_grad():
         | 
| 347 | 
            +
                                encoder_out = models[0](**sample["net_input"])
         | 
| 348 | 
            +
                                feat = encoder_out["encoder_out"].transpose(0, 1).cpu().numpy()
         | 
| 349 | 
            +
                                for i, id in enumerate(sample["id"]):
         | 
| 350 | 
            +
                                    padding = (
         | 
| 351 | 
            +
                                        encoder_out["encoder_padding_mask"][i].cpu().numpy()
         | 
| 352 | 
            +
                                        if encoder_out["encoder_padding_mask"] is not None
         | 
| 353 | 
            +
                                        else None
         | 
| 354 | 
            +
                                    )
         | 
| 355 | 
            +
                                    features[id.item()] = (feat[i], padding)
         | 
| 356 | 
            +
                                continue
         | 
| 357 | 
            +
                        hypos = task.inference_step(generator, models, sample, prefix_tokens)
         | 
| 358 | 
            +
                        num_generated_tokens = sum(len(h[0]["tokens"]) for h in hypos)
         | 
| 359 | 
            +
                        gen_timer.stop(num_generated_tokens)
         | 
| 360 | 
            +
             | 
| 361 | 
            +
                        for i, sample_id in enumerate(sample["id"].tolist()):
         | 
| 362 | 
            +
                            speaker = None
         | 
| 363 | 
            +
                            # id = task.dataset(args.gen_subset).ids[int(sample_id)]
         | 
| 364 | 
            +
                            id = sample_id
         | 
| 365 | 
            +
                            toks = (
         | 
| 366 | 
            +
                                sample["target"][i, :]
         | 
| 367 | 
            +
                                if "target_label" not in sample
         | 
| 368 | 
            +
                                else sample["target_label"][i, :]
         | 
| 369 | 
            +
                            )
         | 
| 370 | 
            +
                            target_tokens = utils.strip_pad(toks, tgt_dict.pad()).int().cpu()
         | 
| 371 | 
            +
                            # Process top predictions
         | 
| 372 | 
            +
                            errs, length = process_predictions(
         | 
| 373 | 
            +
                                args,
         | 
| 374 | 
            +
                                hypos[i],
         | 
| 375 | 
            +
                                None,
         | 
| 376 | 
            +
                                tgt_dict,
         | 
| 377 | 
            +
                                target_tokens,
         | 
| 378 | 
            +
                                res_files,
         | 
| 379 | 
            +
                                speaker,
         | 
| 380 | 
            +
                                id,
         | 
| 381 | 
            +
                            )
         | 
| 382 | 
            +
                            errs_t += errs
         | 
| 383 | 
            +
                            lengths_t += length
         | 
| 384 | 
            +
             | 
| 385 | 
            +
                        wps_meter.update(num_generated_tokens)
         | 
| 386 | 
            +
                        t.log({"wps": round(wps_meter.avg)})
         | 
| 387 | 
            +
                        num_sentences += (
         | 
| 388 | 
            +
                            sample["nsentences"] if "nsentences" in sample else sample["id"].numel()
         | 
| 389 | 
            +
                        )
         | 
| 390 | 
            +
             | 
| 391 | 
            +
                wer = None
         | 
| 392 | 
            +
                if args.dump_emissions:
         | 
| 393 | 
            +
                    emm_arr = []
         | 
| 394 | 
            +
                    for i in range(len(emissions)):
         | 
| 395 | 
            +
                        emm_arr.append(emissions[i])
         | 
| 396 | 
            +
                    np.save(args.dump_emissions, emm_arr)
         | 
| 397 | 
            +
                    logger.info(f"saved {len(emissions)} emissions to {args.dump_emissions}")
         | 
| 398 | 
            +
                elif args.dump_features:
         | 
| 399 | 
            +
                    feat_arr = []
         | 
| 400 | 
            +
                    for i in range(len(features)):
         | 
| 401 | 
            +
                        feat_arr.append(features[i])
         | 
| 402 | 
            +
                    np.save(args.dump_features, feat_arr)
         | 
| 403 | 
            +
                    logger.info(f"saved {len(features)} emissions to {args.dump_features}")
         | 
| 404 | 
            +
                else:
         | 
| 405 | 
            +
                    if lengths_t > 0:
         | 
| 406 | 
            +
                        wer = errs_t * 100.0 / lengths_t
         | 
| 407 | 
            +
                        logger.info(f"WER: {wer}")
         | 
| 408 | 
            +
             | 
| 409 | 
            +
                    logger.info(
         | 
| 410 | 
            +
                        "| Processed {} sentences ({} tokens) in {:.1f}s ({:.2f}"
         | 
| 411 | 
            +
                        "sentences/s, {:.2f} tokens/s)".format(
         | 
| 412 | 
            +
                            num_sentences,
         | 
| 413 | 
            +
                            gen_timer.n,
         | 
| 414 | 
            +
                            gen_timer.sum,
         | 
| 415 | 
            +
                            num_sentences / gen_timer.sum,
         | 
| 416 | 
            +
                            1.0 / gen_timer.avg,
         | 
| 417 | 
            +
                        )
         | 
| 418 | 
            +
                    )
         | 
| 419 | 
            +
                    logger.info("| Generate {} with beam={}".format(args.gen_subset, args.beam))
         | 
| 420 | 
            +
                return task, wer
         | 
| 421 | 
            +
             | 
| 422 | 
            +
             | 
| 423 | 
            +
            def make_parser():
         | 
| 424 | 
            +
                parser = options.get_generation_parser()
         | 
| 425 | 
            +
                parser = add_asr_eval_argument(parser)
         | 
| 426 | 
            +
                return parser
         | 
| 427 | 
            +
             | 
| 428 | 
            +
             | 
| 429 | 
            +
            def cli_main():
         | 
| 430 | 
            +
                parser = make_parser()
         | 
| 431 | 
            +
                args = options.parse_args_and_arch(parser)
         | 
| 432 | 
            +
                main(args)
         | 
| 433 | 
            +
             | 
| 434 | 
            +
             | 
| 435 | 
            +
            if __name__ == "__main__":
         | 
| 436 | 
            +
                cli_main()
         | 
    	
        mms_infer.py
    ADDED
    
    | @@ -0,0 +1,52 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            #!/usr/bin/env python -u
         | 
| 2 | 
            +
            # Copyright (c) Facebook, Inc. and its affiliates.
         | 
| 3 | 
            +
            #
         | 
| 4 | 
            +
            # This source code is licensed under the MIT license found in the
         | 
| 5 | 
            +
            # LICENSE file in the root directory of this source tree.
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            import argparse
         | 
| 8 | 
            +
            import soundfile as sf
         | 
| 9 | 
            +
            import tempfile
         | 
| 10 | 
            +
            from pathlib import Path
         | 
| 11 | 
            +
            import os
         | 
| 12 | 
            +
            import subprocess
         | 
| 13 | 
            +
            import sys
         | 
| 14 | 
            +
            import re
         | 
| 15 | 
            +
             | 
| 16 | 
            +
            def parser():
         | 
| 17 | 
            +
                parser = argparse.ArgumentParser(description="ASR inference script for MMS model")
         | 
| 18 | 
            +
                parser.add_argument("--model", type=str, help="path to ASR model", required=True)
         | 
| 19 | 
            +
                parser.add_argument("--audio", type=str, help="path to audio file", required=True, nargs='+')
         | 
| 20 | 
            +
                parser.add_argument("--lang", type=str, help="audio language", required=True)
         | 
| 21 | 
            +
                parser.add_argument("--format", type=str, choices=["none", "letter"], default="letter")
         | 
| 22 | 
            +
                return parser.parse_args()
         | 
| 23 | 
            +
             | 
| 24 | 
            +
            def process(args):    
         | 
| 25 | 
            +
                with tempfile.TemporaryDirectory() as tmpdir:
         | 
| 26 | 
            +
                    print(">>> preparing tmp manifest dir ...", file=sys.stderr)
         | 
| 27 | 
            +
                    tmpdir = Path(tmpdir)
         | 
| 28 | 
            +
                    with open(tmpdir / "dev.tsv", "w") as fw:
         | 
| 29 | 
            +
                        fw.write("/\n")
         | 
| 30 | 
            +
                        for audio in args.audio:
         | 
| 31 | 
            +
                            nsample = sf.SoundFile(audio).frames
         | 
| 32 | 
            +
                            fw.write(f"{audio}\t{nsample}\n")
         | 
| 33 | 
            +
                    with open(tmpdir / "dev.uid", "w") as fw:
         | 
| 34 | 
            +
                        fw.write(f"{audio}\n"*len(args.audio))
         | 
| 35 | 
            +
                    with open(tmpdir / "dev.ltr", "w") as fw:
         | 
| 36 | 
            +
                        fw.write("d u m m y | d u m m y\n"*len(args.audio))
         | 
| 37 | 
            +
                    with open(tmpdir / "dev.wrd", "w") as fw:
         | 
| 38 | 
            +
                        fw.write("dummy dummy\n"*len(args.audio))
         | 
| 39 | 
            +
                    cmd = f"""
         | 
| 40 | 
            +
                    PYTHONPATH=. PREFIX=INFER HYDRA_FULL_ERROR=1 python infer.py -m decoding.type=viterbi dataset.max_tokens=4000000 distributed_training.distributed_world_size=1 "common_eval.path='{args.model}'" task.data={tmpdir} dataset.gen_subset="{args.lang}:dev" common_eval.post_process={args.format} decoding.results_path={tmpdir}
         | 
| 41 | 
            +
                    """
         | 
| 42 | 
            +
                    print(">>> loading model & running inference ...", file=sys.stderr)
         | 
| 43 | 
            +
                    subprocess.run(cmd, shell=True, stdout=subprocess.DEVNULL,)
         | 
| 44 | 
            +
                    with open(tmpdir/"hypo.word") as fr:
         | 
| 45 | 
            +
                        for ii, hypo in enumerate(fr):
         | 
| 46 | 
            +
                            hypo = re.sub("\(\S+\)$", "", hypo).strip()
         | 
| 47 | 
            +
                            print(f'===============\nInput: {args.audio[ii]}\nOutput: {hypo}')
         | 
| 48 | 
            +
             | 
| 49 | 
            +
             | 
| 50 | 
            +
            if __name__ == "__main__":
         | 
| 51 | 
            +
                args = parser()
         | 
| 52 | 
            +
                process(args)
         | 
    	
        requirements.txt
    ADDED
    
    | @@ -0,0 +1,9 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            transformers
         | 
| 2 | 
            +
            argparse
         | 
| 3 | 
            +
            soundfile
         | 
| 4 | 
            +
            backports.tempfile
         | 
| 5 | 
            +
            pathlib
         | 
| 6 | 
            +
            editdistance
         | 
| 7 | 
            +
            numpy
         | 
| 8 | 
            +
            torch
         | 
| 9 | 
            +
            fairseq
         | 
