Spaces:
Build error
Build error
Commit
·
b01727d
1
Parent(s):
ae31cb7
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
|
| 3 |
+
from smart_open import open
|
| 4 |
+
import gensim
|
| 5 |
+
from gensim.similarities.annoy import AnnoyIndexer
|
| 6 |
+
import plotly.express as px
|
| 7 |
+
import pandas as pd
|
| 8 |
+
import numpy as np
|
| 9 |
+
import pacmap
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
# Load into gensim model
|
| 13 |
+
def load_gensim(fname):
|
| 14 |
+
model = gensim.models.KeyedVectors.load_word2vec_format(fname, binary=False)
|
| 15 |
+
# Search using Annoy indexer; Faster method
|
| 16 |
+
annoy_index = AnnoyIndexer(model, 100)
|
| 17 |
+
return model, annoy_index
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
def searchNexplore(word, final_dfs, model, annoy_index, topn):
|
| 21 |
+
|
| 22 |
+
vector = model[word]
|
| 23 |
+
approximate_neighbors = model.most_similar([vector], topn=topn, indexer=annoy_index)
|
| 24 |
+
rows = []
|
| 25 |
+
for row in approximate_neighbors:
|
| 26 |
+
rows.append(row[0])
|
| 27 |
+
searched_df = final_dfs.loc[rows]
|
| 28 |
+
return searched_df, approximate_neighbors
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def embedding_dim_reduction(
|
| 32 |
+
embeddings, n_dim=2, n_neighbors=10, MN_ratio=0.5, FP_ratio=2.0
|
| 33 |
+
):
|
| 34 |
+
"""
|
| 35 |
+
Perform PaCMAP dimention reduction
|
| 36 |
+
|
| 37 |
+
Selection of values :
|
| 38 |
+
1. Default transorms MN_ratio=0.5, FP_ratio=2.0
|
| 39 |
+
2. For heavy transformations MN_ratio=30, FP_ratio=100.0
|
| 40 |
+
"""
|
| 41 |
+
reducer = pacmap.PaCMAP(
|
| 42 |
+
n_components=n_dim,
|
| 43 |
+
n_neighbors=n_neighbors,
|
| 44 |
+
MN_ratio=MN_ratio,
|
| 45 |
+
FP_ratio=FP_ratio,
|
| 46 |
+
lr=0.05,
|
| 47 |
+
num_iters=1000,
|
| 48 |
+
verbose=False,
|
| 49 |
+
)
|
| 50 |
+
|
| 51 |
+
reduced_embeddings = reducer.fit_transform(embeddings, init="pca")
|
| 52 |
+
return reduced_embeddings
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
model, annoy_index = load_gensim("embedding_dump.txt")
|
| 56 |
+
final_dfs = pd.read_csv("raw_embeddings_allinone.csv")
|
| 57 |
+
final_dfs.set_index("Unnamed: 0", inplace=True)
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
def get_semantic(input_text, topn):
|
| 61 |
+
|
| 62 |
+
searched_df, approximate_neighbors = searchNexplore(
|
| 63 |
+
input_text, final_dfs, model, annoy_index, topn
|
| 64 |
+
)
|
| 65 |
+
|
| 66 |
+
reduced_embeddings = embedding_dim_reduction(
|
| 67 |
+
searched_df, n_dim=2, n_neighbors=10, MN_ratio=0.5, FP_ratio=2.0
|
| 68 |
+
)
|
| 69 |
+
|
| 70 |
+
fig1 = px.scatter(
|
| 71 |
+
x=reduced_embeddings[:, 0],
|
| 72 |
+
y=reduced_embeddings[:, 1],
|
| 73 |
+
hover_name=searched_df.index.tolist(),
|
| 74 |
+
color=searched_df.index.tolist(),
|
| 75 |
+
)
|
| 76 |
+
|
| 77 |
+
reduced_embeddings = embedding_dim_reduction(
|
| 78 |
+
searched_df, n_dim=3, n_neighbors=10, MN_ratio=0.5, FP_ratio=2.0
|
| 79 |
+
)
|
| 80 |
+
|
| 81 |
+
fig2 = px.scatter_3d(
|
| 82 |
+
x=reduced_embeddings[:, 0],
|
| 83 |
+
y=reduced_embeddings[:, 1],
|
| 84 |
+
z=reduced_embeddings[:, 2],
|
| 85 |
+
hover_name=searched_df.index.tolist(),
|
| 86 |
+
color=searched_df.index.tolist(),
|
| 87 |
+
)
|
| 88 |
+
|
| 89 |
+
return fig1, fig2, approximate_neighbors
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
iface = gr.Interface(
|
| 93 |
+
fn=get_semantic,
|
| 94 |
+
inputs=[
|
| 95 |
+
"text",
|
| 96 |
+
gr.Slider(0, 1000, value=100),
|
| 97 |
+
],
|
| 98 |
+
outputs=["plot", "plot", "list"],
|
| 99 |
+
examples=[["SOPA_CANJA_C/ALETRIA_MAGGI_82GR", 100]],
|
| 100 |
+
title="Sentiment Explorer",
|
| 101 |
+
description="Get Sentiment search results",
|
| 102 |
+
theme="peach",
|
| 103 |
+
).launch(inline=False)
|