Spaces:
Runtime error
Runtime error
tomas.helmfridsson
commited on
Commit
·
1b048ee
1
Parent(s):
7894f40
update guis 11
Browse files
app.py
CHANGED
|
@@ -1,78 +1,57 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
import os
|
| 3 |
-
|
|
|
|
| 4 |
from langchain_community.document_loaders import PyPDFLoader
|
| 5 |
from langchain_community.vectorstores import FAISS
|
| 6 |
from langchain_huggingface.embeddings import HuggingFaceEmbeddings
|
| 7 |
from langchain_huggingface.llms import HuggingFacePipeline
|
| 8 |
from langchain.chains import RetrievalQA
|
| 9 |
-
from transformers import pipeline
|
| 10 |
|
| 11 |
-
# 1) Ladda och indexera PDF:er
|
| 12 |
def load_vectorstore():
|
| 13 |
-
|
| 14 |
for fn in os.listdir("document"):
|
| 15 |
if fn.lower().endswith(".pdf"):
|
| 16 |
-
|
| 17 |
-
docs = PyPDFLoader(path).load_and_split()
|
| 18 |
-
all_docs.extend(docs)
|
| 19 |
files.append(fn)
|
| 20 |
emb = HuggingFaceEmbeddings(model_name="KBLab/sentence-bert-swedish-cased")
|
| 21 |
-
vs = FAISS.from_documents(
|
| 22 |
return vs, files
|
| 23 |
|
| 24 |
-
#
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
# B) Indexera och initiera
|
| 30 |
-
vectorstore, loaded_files = load_vectorstore()
|
| 31 |
-
llm_pipe = pipeline("text-generation", model="tiiuae/falcon-rw-1b", device=-1)
|
| 32 |
-
llm = HuggingFacePipeline(
|
| 33 |
-
pipeline=llm_pipe,
|
| 34 |
-
model_kwargs={"temperature": 0.3, "max_new_tokens": 512}
|
| 35 |
-
)
|
| 36 |
-
qa = RetrievalQA.from_chain_type(llm=llm, retriever=vectorstore.as_retriever())
|
| 37 |
|
| 38 |
-
|
|
|
|
|
|
|
| 39 |
status.visible = False
|
| 40 |
-
gr.Markdown(
|
| 41 |
-
"✅ Klar! Du kan nu ställa frågor om dokumenten nedan:\n\n" +
|
| 42 |
-
"\n".join(f"- {f}" for f in loaded_files),
|
| 43 |
-
elem_id="status-text"
|
| 44 |
-
)
|
| 45 |
|
| 46 |
-
|
|
|
|
| 47 |
with gr.Row():
|
| 48 |
txt = gr.Textbox(label="Din fråga:")
|
| 49 |
-
temp = gr.Slider(0,
|
| 50 |
send = gr.Button("Skicka")
|
| 51 |
|
| 52 |
-
|
| 53 |
-
chatbot = gr.Chatbot([], type="messages")
|
| 54 |
|
| 55 |
-
# F) Logik för chatten
|
| 56 |
def chat_fn(message, temperature, history):
|
| 57 |
-
|
| 58 |
-
if len(message) > 1000:
|
| 59 |
-
history = history or []
|
| 60 |
-
history.append(("⚠️ Din fråga är för lång, korta ner den.", ""))
|
| 61 |
return history
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
|
|
|
| 69 |
history = history or []
|
| 70 |
-
history.append((message,
|
| 71 |
return history
|
| 72 |
|
| 73 |
-
|
| 74 |
-
send.click(fn=chat_fn,
|
| 75 |
-
inputs=[txt, temp, chatbot],
|
| 76 |
-
outputs=chatbot)
|
| 77 |
|
| 78 |
demo.launch()
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
+
import gradio as gr
|
| 3 |
+
from transformers import pipeline
|
| 4 |
from langchain_community.document_loaders import PyPDFLoader
|
| 5 |
from langchain_community.vectorstores import FAISS
|
| 6 |
from langchain_huggingface.embeddings import HuggingFaceEmbeddings
|
| 7 |
from langchain_huggingface.llms import HuggingFacePipeline
|
| 8 |
from langchain.chains import RetrievalQA
|
|
|
|
| 9 |
|
|
|
|
| 10 |
def load_vectorstore():
|
| 11 |
+
docs, files = [], []
|
| 12 |
for fn in os.listdir("document"):
|
| 13 |
if fn.lower().endswith(".pdf"):
|
| 14 |
+
docs.extend(PyPDFLoader(os.path.join("document", fn)).load_and_split())
|
|
|
|
|
|
|
| 15 |
files.append(fn)
|
| 16 |
emb = HuggingFaceEmbeddings(model_name="KBLab/sentence-bert-swedish-cased")
|
| 17 |
+
vs = FAISS.from_documents(docs, emb)
|
| 18 |
return vs, files
|
| 19 |
|
| 20 |
+
# Bygg index + modell
|
| 21 |
+
vectorstore, file_list = load_vectorstore()
|
| 22 |
+
pipe = pipeline("text-generation", model="tiiuae/falcon-rw-1b", device=-1)
|
| 23 |
+
llm = HuggingFacePipeline(pipeline=pipe, model_kwargs={"temperature":0.3,"max_new_tokens":512})
|
| 24 |
+
qa = RetrievalQA.from_chain_type(llm=llm, retriever=vectorstore.as_retriever())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
+
# Gradio-UI
|
| 27 |
+
with gr.Blocks() as demo:
|
| 28 |
+
status = gr.Markdown("🔄 Laddar…", elem_id="status")
|
| 29 |
status.visible = False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
+
gr.Markdown("**✅ Klart!** Fråga om PDF-filerna:\n\n" + "\n".join(f"- {f}" for f in file_list))
|
| 32 |
+
|
| 33 |
with gr.Row():
|
| 34 |
txt = gr.Textbox(label="Din fråga:")
|
| 35 |
+
temp = gr.Slider(0,1,value=0.3,step=0.05,label="Temperatur")
|
| 36 |
send = gr.Button("Skicka")
|
| 37 |
|
| 38 |
+
chatbot = gr.Chatbot()
|
|
|
|
| 39 |
|
|
|
|
| 40 |
def chat_fn(message, temperature, history):
|
| 41 |
+
if not message:
|
|
|
|
|
|
|
|
|
|
| 42 |
return history
|
| 43 |
+
if len(message)>1000:
|
| 44 |
+
reply = f"⚠️ Frågan är för lång ({len(message)} tecken)."
|
| 45 |
+
else:
|
| 46 |
+
llm.model_kwargs["temperature"] = temperature
|
| 47 |
+
try:
|
| 48 |
+
reply = qa.invoke({"query":message})["result"]
|
| 49 |
+
except Exception as e:
|
| 50 |
+
reply = f"Ett fel uppstod: {e}"
|
| 51 |
history = history or []
|
| 52 |
+
history.append((message, reply))
|
| 53 |
return history
|
| 54 |
|
| 55 |
+
send.click(fn=chat_fn, inputs=[txt, temp, chatbot], outputs=chatbot)
|
|
|
|
|
|
|
|
|
|
| 56 |
|
| 57 |
demo.launch()
|