Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import pipeline | |
from PIL import Image | |
import io | |
from gtts import gTTS | |
# Page config | |
st.title("🖼️ → 📖 Image-to-Story Demo") | |
st.write("Upload an image and watch as it’s captioned, turned into a short story, and even read aloud!") | |
# Load and cache pipelines | |
def load_captioner(): | |
return pipeline("image-to-text", model="unography/blip-large-long-cap") | |
def load_story_gen(): | |
return pipeline( | |
"text-generation", | |
model="gpt2", | |
tokenizer="gpt2" | |
) | |
captioner = load_captioner() | |
story_gen = load_story_gen() | |
# 1) Image upload | |
uploaded = st.file_uploader("Upload an image", type=["png", "jpg", "jpeg"]) | |
if uploaded: | |
img = Image.open(uploaded) | |
st.image(img, use_column_width=True) | |
# 2) Generate caption | |
with st.spinner("Generating caption…"): | |
caps = captioner(img) | |
# `caps` is a list of dicts like [{"generated_text": "..."}] | |
caption = caps[0]["generated_text"] | |
st.write("**Caption:**", caption) | |
# 3) Generate story from caption | |
with st.spinner("Spinning up a story…"): | |
story_out = story_gen( | |
caption, | |
max_length=200, | |
num_return_sequences=1, | |
do_sample=True, | |
top_p=0.9 | |
) | |
story = story_out[0]["generated_text"] | |
st.write("**Story:**", story) | |
# 4) Play story as audio | |
if st.button("🔊 Play Story Audio"): | |
with st.spinner("Generating audio…"): | |
tts = gTTS(text=story, lang="en") | |
buf = io.BytesIO() | |
tts.write_to_fp(buf) | |
buf.seek(0) | |
st.audio(buf.read(), format="audio/mp3") | |
""" | |
import streamlit as st | |
from transformers import pipeline | |
def main(): | |
sentiment_pipeline = pipeline(model="distilbert/distilbert-base-uncased-finetuned-sst-2-english") | |
st.title("Sentiment Analysis with HuggingFace Spaces") | |
st.write("Enter a sentence to analyze its sentiment:") | |
user_input = st.text_input("") | |
if user_input: | |
result = sentiment_pipeline(user_input) | |
sentiment = result[0]["label"] | |
confidence = result[0]["score"] | |
st.write(f"Sentiment: {sentiment}") | |
st.write(f"Confidence: {confidence:.2f}") | |
if __name__ == "__main__": | |
main() | |
""" |