zuminghuang's picture
Upload 4 files
4ce053f verified
raw
history blame
11.2 kB
import os
import re
import sys
import json
import time
import copy
import base64
import asyncio
import tempfile
import subprocess
from pathlib import Path
from datetime import datetime
import zipfile
import numpy as np
import gradio as gr
from PIL import Image
from pdf2image import convert_from_path
from loguru import logger
from openai import OpenAI, AsyncOpenAI
from gradio_pdf import PDF
import uuid
import tqdm
import requests
def setup_poppler_linux():
poppler_dir = "/tmp/poppler"
if not os.path.exists(poppler_dir):
os.makedirs(poppler_dir, exist_ok=True)
subprocess.run([
"apt-get", "update"
], check=True)
subprocess.run([
"apt-get", "install", "-y", "poppler-utils"
], check=True)
setup_poppler_linux()
preset_prompts = [
"Please convert the document into Markdown format.",
"Generate a clean and structured Markdown version of the document.",
"Transform this content into Markdown with proper headings and bullet points.",
"Convert the text to Markdown, preserving structure and formatting.",
"Reformat this document as Markdown with clear sections and lists.",
]
def send_pdf_to_parse(file_path, server_ip, port, route="/upload", api_key=None):
url = f"http://{server_ip}:{port}{route}"
headers = {}
if api_key:
headers["Authorization"] = f"Bearer {api_key}"
with open(file_path, "rb") as f:
files = {"file": (os.path.basename(file_path), f, "application/pdf")}
response = requests.post(url, files=files, headers=headers)
return response
def extract_makrdown(text):
m = re.search(r'```markdown\s*([\s\S]*?)```', text, re.MULTILINE)
if m:
return m.group(1).strip()
else:
return text
openai_api_key = "EMPTY"
openai_api_base = os.environ.get("openai_api_base")
IP = os.environ.get("IP")
PORT = os.environ.get("PORT")
client = AsyncOpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
)
async def request(messages):
chat_completion_from_base64 = await client.chat.completions.create(
messages=messages,
model="Qwen2_5VL",
max_completion_tokens=4096,
stream=True,
temperature=0.0,
top_p=0.95
)
page = ""
async for chunk in chat_completion_from_base64:
if chunk.choices[0].delta.content:
content = chunk.choices[0].delta.content
choice = chunk.choices[0]
if choice.finish_reason is not None:
print(f"end reason = {choice.finish_reason}")
break
page += content
yield content
def images_to_pdf(img_paths, pdf_path):
if isinstance(img_paths, (str, Path)):
img_paths = [img_paths]
if not img_paths:
raise ValueError("img_paths is empty")
images = []
for p in img_paths:
p = Path(p)
if not p.is_file():
raise FileNotFoundError(p)
img = Image.open(p)
if img.mode in ("RGBA", "P"):
img = img.convert("RGB")
images.append(img)
pdf_path = Path(pdf_path)
pdf_path.parent.mkdir(parents=True, exist_ok=True)
images[0].save(pdf_path,
save_all=True,
append_images=images[1:],
resolution=300.0)
return pdf_path
def encode_image(image_path):
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode("utf-8")
def build_message(image_path, prompt):
content = [
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{encode_image(image_path)}"
}
},
{"type": "text", 'text': prompt}
]
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{'role': 'user', 'content': content}
]
return messages
def download_markdown_file(md_text):
filename = f"markdown_{uuid.uuid4().hex[:8]}.md"
filepath = Path("downloads") / filename
filepath.parent.mkdir(exist_ok=True)
with open(filepath, "w", encoding="utf-8") as f:
f.write(md_text)
return str(filepath)
async def doc_parser(doc_path, prompt):
doc_path = Path(doc_path)
if not doc_path.is_file():
raise FileNotFoundError(doc_path)
with tempfile.TemporaryDirectory() as tmpdir:
tmpdir = Path(tmpdir)
queries = []
if doc_path.suffix.lower() == ".pdf":
pages: List[Image.Image] = convert_from_path(doc_path, dpi=300)
for idx, page in enumerate(pages, start=1):
img_path = tmpdir / f"page_{idx}.png"
page.save(img_path, "PNG")
messages = build_message(img_path, prompt)
queries.append(messages)
else:
messages = build_message(doc_path, prompt)
queries.append(messages)
all_pages = []
all_pages_raw = []
for query in queries:
pages = ""
async for chunk in request(query):
pages += chunk
yield extract_makrdown(pages), pages
all_pages.append(extract_makrdown(pages))
all_pages_raw.append(pages)
print(all_pages)
yield "\n---\n".join(all_pages), "\n\n".join(all_pages_raw)
def compress_directory_to_zip(directory_path, output_zip_path):
try:
with zipfile.ZipFile(output_zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
for root, dirs, files in os.walk(directory_path):
for file in files:
file_path = os.path.join(root, file)
arcname = os.path.relpath(file_path, directory_path)
zipf.write(file_path, arcname)
return 0
except Exception as e:
logger.exception(e)
return -1
latex_delimiters = [
{'left': '$$', 'right': '$$', 'display': True},
{'left': '$', 'right': '$', 'display': False},
{'left': '\\(', 'right': '\\)', 'display': False},
{'left': '\\[', 'right': '\\]', 'display': True},
]
def check_prompt(prompt):
if not prompt or prompt.strip() == "":
raise gr.Error("Please select or enter a prompt before parsing.")
return prompt
def to_file(image_path):
if image_path.endswith("Academic_Papers.png"):
image_path = image_path.replace("Academic_Papers.png", "Academic_Papers.pdf")
return image_path
def process_file(file_path):
if file_path is None:
return None
if not file_path.endswith(".pdf"):
tmp_file_path = Path(file_path)
tmp_file_path = tmp_file_path.with_suffix(".pdf")
images_to_pdf(file_path, tmp_file_path)
else:
send_pdf_to_parse(file_path, IP, PORT)
tmp_file_path = file_path
return str(tmp_file_path)
if __name__ == '__main__':
with gr.Blocks() as demo:
with gr.Row():
with gr.Column(variant='panel', scale=5):
file = gr.File(label='Please upload a PDF or image', file_types=['.pdf', '.png', '.jpeg', '.jpg'], type="filepath")
prompts = gr.Dropdown(
choices=preset_prompts,
label="Prompt",
info="Enter or select prompts...",
value=preset_prompts[0],
multiselect=False,
interactive=True,
allow_custom_value=True,
)
with gr.Row():
change_bu = gr.Button('Parse')
clear_bu = gr.ClearButton(value='Clear')
pdf_show = PDF(label='Preview', interactive=False, visible=True, height=800)
example_root = os.path.join(os.path.dirname(__file__), 'examples')
images = [
os.path.join(example_root, f)
for f in os.listdir(example_root)
if f.lower().endswith(('png', 'jpg', 'jpeg'))
]
with gr.Column(variant='panel', scale=5):
with gr.Accordion("Examples", open=True):
example_root = "examples"
file_path = [
os.path.join(example_root, f)
for f in ["Financial_Reports.png", "Books.png", "Magazines.png", "Academic_Papers.png"]
]
with gr.Row():
for i, label in enumerate(["Financial Reports(IMG)", "Books(IMG)", "Magazines(IMG)", "Academic Papers(PDF)"]):
with gr.Column(scale=1, min_width=120):
gr.Image(
value=file_path[i],
width=120,
height=90,
show_label=False,
show_download_button=False
)
gr.Button(label).click(fn=to_file, inputs=gr.State(file_path[i]), outputs=file)
download_btn = gr.Button("⬇️ Generate download link", size="sm")
output_file = gr.File(label='Parse result', interactive=False, elem_id="down-file-box",visible=False)
gr.HTML("""
<style>
#down-file-box {
max-height: 300px;
}
</style>
""")
with gr.Tabs():
with gr.Tab('Markdown rendering'):
md = gr.Markdown(label='Markdown rendering', height=1100, show_copy_button=True,
latex_delimiters=latex_delimiters,
line_breaks=True)
with gr.Tab('Markdown text'):
md_text = gr.TextArea(lines=45, show_copy_button=True)
file.change(fn=process_file, inputs=file, outputs=pdf_show)
change_bu.click(
fn=check_prompt,
inputs=prompts,
outputs=prompts
).then(
lambda f: gr.update(visible=False),
inputs=output_file,
outputs=output_file
).then(
fn=doc_parser,
inputs=[file, prompts],
outputs=[md, md_text]
)
clear_bu.add([file, md, pdf_show, md_text])
download_btn.click(
fn=download_markdown_file,
inputs=md_text,
outputs=output_file
).then(
lambda f: gr.update(visible=True),
inputs=output_file,
outputs=output_file
)
demo.launch(server_name='0.0.0.0',share=True)