Update data_utils.py
Browse files- data_utils.py +75 -158
data_utils.py
CHANGED
|
@@ -1,185 +1,102 @@
|
|
| 1 |
import pandas as pd
|
| 2 |
-
import
|
| 3 |
-
import io
|
| 4 |
-
from typing import Dict, List, Optional, Tuple, Union
|
| 5 |
|
| 6 |
-
def load_csv_data(
|
| 7 |
-
"""
|
| 8 |
-
Load CSV data from a URL
|
| 9 |
-
|
| 10 |
-
Args:
|
| 11 |
-
url: URL to the CSV file
|
| 12 |
-
|
| 13 |
-
Returns:
|
| 14 |
-
DataFrame containing the CSV data
|
| 15 |
-
"""
|
| 16 |
try:
|
| 17 |
-
|
| 18 |
-
response.raise_for_status()
|
| 19 |
-
df = pd.read_csv(io.StringIO(response.text))
|
| 20 |
-
return df
|
| 21 |
except Exception as e:
|
| 22 |
-
print(f"Error loading CSV: {e}")
|
| 23 |
-
#
|
| 24 |
-
return pd.DataFrame(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
-
def analyze_csv_data(df
|
| 27 |
-
"""
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
Returns:
|
| 34 |
-
Dictionary containing analysis results
|
| 35 |
-
"""
|
| 36 |
-
# Get unique crops and diseases
|
| 37 |
-
unique_crops = df['Crop'].unique().tolist()
|
| 38 |
-
unique_diseases = df['Disease'].unique().tolist()
|
| 39 |
-
|
| 40 |
-
# Count diseases by crop
|
| 41 |
-
diseases_by_crop = df.groupby('Crop')['Disease'].count().to_dict()
|
| 42 |
-
|
| 43 |
-
# Get common treatments
|
| 44 |
-
common_treatments = df['Treatment'].value_counts().head(5).to_dict()
|
| 45 |
-
|
| 46 |
-
# Get common chemicals
|
| 47 |
-
common_chemicals = df['Medicine/Chemical Control'].value_counts().head(5).to_dict()
|
| 48 |
-
|
| 49 |
-
return {
|
| 50 |
-
'unique_crops': unique_crops,
|
| 51 |
-
'unique_diseases': unique_diseases,
|
| 52 |
-
'diseases_by_crop': diseases_by_crop,
|
| 53 |
-
'common_treatments': common_treatments,
|
| 54 |
-
'common_chemicals': common_chemicals
|
| 55 |
}
|
|
|
|
| 56 |
|
| 57 |
-
def search_disease_info(df
|
| 58 |
-
"""
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
|
|
|
|
|
|
|
|
|
| 85 |
return results
|
| 86 |
|
| 87 |
-
def extract_entities_from_question(question
|
| 88 |
-
"""
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
Args:
|
| 92 |
-
question: Question text
|
| 93 |
-
df: DataFrame containing the CSV data
|
| 94 |
-
|
| 95 |
-
Returns:
|
| 96 |
-
Tuple of (crop, disease) extracted from the question
|
| 97 |
-
"""
|
| 98 |
-
question_lower = question.lower()
|
| 99 |
|
| 100 |
# Get all crops and diseases from the dataframe
|
| 101 |
-
crops =
|
| 102 |
-
diseases =
|
| 103 |
|
| 104 |
-
# Find
|
| 105 |
found_crop = None
|
|
|
|
|
|
|
| 106 |
for crop in crops:
|
| 107 |
-
if crop in
|
| 108 |
found_crop = crop
|
| 109 |
break
|
| 110 |
-
|
| 111 |
-
# Find disease mentions
|
| 112 |
-
found_disease = None
|
| 113 |
for disease in diseases:
|
| 114 |
-
if disease in
|
| 115 |
found_disease = disease
|
| 116 |
break
|
| 117 |
|
| 118 |
return found_crop, found_disease
|
| 119 |
|
| 120 |
-
def get_treatment_for_disease(df
|
| 121 |
-
"""
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
df: DataFrame containing the CSV data
|
| 126 |
-
crop: Optional crop name
|
| 127 |
-
disease: Disease name
|
| 128 |
-
|
| 129 |
-
Returns:
|
| 130 |
-
Dictionary containing treatment information
|
| 131 |
-
"""
|
| 132 |
-
if crop:
|
| 133 |
-
# Look for specific crop-disease combination
|
| 134 |
-
matches = df[(df['Crop'].str.lower() == crop) &
|
| 135 |
-
(df['Disease'].str.lower() == disease)]
|
| 136 |
|
| 137 |
if not matches.empty:
|
| 138 |
-
|
| 139 |
return {
|
| 140 |
-
'crop':
|
| 141 |
-
'disease':
|
| 142 |
-
'symptoms':
|
| 143 |
-
'treatment':
|
| 144 |
-
'medicine':
|
| 145 |
-
'exact_match': True
|
| 146 |
}
|
| 147 |
|
| 148 |
-
|
| 149 |
-
matches = df[df['Disease'].str.lower() == disease]
|
| 150 |
-
|
| 151 |
-
if not matches.empty:
|
| 152 |
-
match = matches.iloc[0]
|
| 153 |
-
return {
|
| 154 |
-
'crop': match['Crop'],
|
| 155 |
-
'disease': match['Disease'],
|
| 156 |
-
'symptoms': match['Symptoms'],
|
| 157 |
-
'treatment': match['Treatment'],
|
| 158 |
-
'medicine': match['Medicine/Chemical Control'],
|
| 159 |
-
'exact_match': False
|
| 160 |
-
}
|
| 161 |
-
|
| 162 |
-
# Try partial match on disease name
|
| 163 |
-
matches = df[df['Disease'].str.lower().str.contains(disease)]
|
| 164 |
-
|
| 165 |
-
if not matches.empty:
|
| 166 |
-
match = matches.iloc[0]
|
| 167 |
-
return {
|
| 168 |
-
'crop': match['Crop'],
|
| 169 |
-
'disease': match['Disease'],
|
| 170 |
-
'symptoms': match['Symptoms'],
|
| 171 |
-
'treatment': match['Treatment'],
|
| 172 |
-
'medicine': match['Medicine/Chemical Control'],
|
| 173 |
-
'exact_match': False,
|
| 174 |
-
'partial_match': True
|
| 175 |
-
}
|
| 176 |
-
|
| 177 |
-
return {
|
| 178 |
-
'crop': None,
|
| 179 |
-
'disease': disease,
|
| 180 |
-
'symptoms': None,
|
| 181 |
-
'treatment': None,
|
| 182 |
-
'medicine': None,
|
| 183 |
-
'exact_match': False,
|
| 184 |
-
'found': False
|
| 185 |
-
}
|
|
|
|
| 1 |
import pandas as pd
|
| 2 |
+
import re
|
|
|
|
|
|
|
| 3 |
|
| 4 |
+
def load_csv_data(file_path):
|
| 5 |
+
"""Load CSV data from file path"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
try:
|
| 7 |
+
return pd.read_csv(file_path)
|
|
|
|
|
|
|
|
|
|
| 8 |
except Exception as e:
|
| 9 |
+
print(f"Error loading CSV: {str(e)}")
|
| 10 |
+
# Return a minimal dataframe for demonstration
|
| 11 |
+
return pd.DataFrame({
|
| 12 |
+
'Crop': ['Tomato', 'Apple'],
|
| 13 |
+
'Disease': ['Early Blight', 'Apple Scab'],
|
| 14 |
+
'Symptoms': ['Yellow spots on leaves', 'Dark scab-like lesions'],
|
| 15 |
+
'Treatment': ['Remove affected leaves', 'Prune affected branches'],
|
| 16 |
+
'Medicine/Chemical Control': ['Copper fungicide', 'Sulfur spray']
|
| 17 |
+
})
|
| 18 |
|
| 19 |
+
def analyze_csv_data(df):
|
| 20 |
+
"""Analyze CSV data and return statistics"""
|
| 21 |
+
stats = {
|
| 22 |
+
"total_entries": len(df),
|
| 23 |
+
"unique_crops": df['Crop'].nunique(),
|
| 24 |
+
"unique_diseases": df['Disease'].nunique(),
|
| 25 |
+
"crops": df['Crop'].unique().tolist()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
}
|
| 27 |
+
return stats
|
| 28 |
|
| 29 |
+
def search_disease_info(df, query):
|
| 30 |
+
"""Search for disease information in the dataframe"""
|
| 31 |
+
query = query.lower()
|
| 32 |
+
results = []
|
| 33 |
+
|
| 34 |
+
# Search in all columns
|
| 35 |
+
for _, row in df.iterrows():
|
| 36 |
+
score = 0
|
| 37 |
+
if query in str(row['Crop']).lower():
|
| 38 |
+
score += 3
|
| 39 |
+
if query in str(row['Disease']).lower():
|
| 40 |
+
score += 5
|
| 41 |
+
if query in str(row['Symptoms']).lower():
|
| 42 |
+
score += 2
|
| 43 |
+
if query in str(row['Treatment']).lower():
|
| 44 |
+
score += 1
|
| 45 |
+
if query in str(row['Medicine/Chemical Control']).lower():
|
| 46 |
+
score += 1
|
| 47 |
+
|
| 48 |
+
if score > 0:
|
| 49 |
+
results.append({
|
| 50 |
+
'score': score,
|
| 51 |
+
'Crop': row['Crop'],
|
| 52 |
+
'Disease': row['Disease'],
|
| 53 |
+
'Symptoms': row['Symptoms'],
|
| 54 |
+
'Treatment': row['Treatment'],
|
| 55 |
+
'Medicine/Chemical Control': row['Medicine/Chemical Control']
|
| 56 |
+
})
|
| 57 |
+
|
| 58 |
+
# Sort by relevance score
|
| 59 |
+
results.sort(key=lambda x: x['score'], reverse=True)
|
| 60 |
return results
|
| 61 |
|
| 62 |
+
def extract_entities_from_question(question, df):
|
| 63 |
+
"""Extract crop and disease entities from a question"""
|
| 64 |
+
question = question.lower()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
|
| 66 |
# Get all crops and diseases from the dataframe
|
| 67 |
+
crops = set(df['Crop'].str.lower())
|
| 68 |
+
diseases = set(df['Disease'].str.lower())
|
| 69 |
|
| 70 |
+
# Find matches in the question
|
| 71 |
found_crop = None
|
| 72 |
+
found_disease = None
|
| 73 |
+
|
| 74 |
for crop in crops:
|
| 75 |
+
if crop in question:
|
| 76 |
found_crop = crop
|
| 77 |
break
|
| 78 |
+
|
|
|
|
|
|
|
| 79 |
for disease in diseases:
|
| 80 |
+
if disease in question:
|
| 81 |
found_disease = disease
|
| 82 |
break
|
| 83 |
|
| 84 |
return found_crop, found_disease
|
| 85 |
|
| 86 |
+
def get_treatment_for_disease(df, crop, disease):
|
| 87 |
+
"""Get treatment information for a specific crop and disease"""
|
| 88 |
+
if crop and disease:
|
| 89 |
+
matches = df[(df['Crop'].str.lower() == crop.lower()) &
|
| 90 |
+
(df['Disease'].str.lower() == disease.lower())]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
|
| 92 |
if not matches.empty:
|
| 93 |
+
row = matches.iloc[0]
|
| 94 |
return {
|
| 95 |
+
'crop': row['Crop'],
|
| 96 |
+
'disease': row['Disease'],
|
| 97 |
+
'symptoms': row['Symptoms'],
|
| 98 |
+
'treatment': row['Treatment'],
|
| 99 |
+
'medicine': row['Medicine/Chemical Control']
|
|
|
|
| 100 |
}
|
| 101 |
|
| 102 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|