Update app.py
Browse files
app.py
CHANGED
|
@@ -1,61 +1,123 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import pandas as pd
|
| 3 |
import os
|
| 4 |
-
import random
|
| 5 |
-
from PIL import Image
|
| 6 |
import torch
|
| 7 |
-
from torchvision import transforms
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
-
# --- Load CSV Data ---
|
| 10 |
def load_treatments_data():
|
| 11 |
try:
|
| 12 |
-
context = pd.read_csv('
|
| 13 |
print("CSV file loaded successfully.")
|
| 14 |
return context
|
| 15 |
except FileNotFoundError:
|
| 16 |
print("Error: crop_diseases_treatments.csv not found.")
|
| 17 |
# Create a minimal dataframe for demonstration
|
| 18 |
return pd.DataFrame({
|
| 19 |
-
'Crop': ['Tomato', 'Apple', 'Corn', '
|
| 20 |
-
'Disease': ['Early Blight', 'Apple Scab', 'Common Rust', '
|
| 21 |
-
'Symptoms': [
|
| 22 |
-
|
| 23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
})
|
| 25 |
|
| 26 |
-
# ---
|
| 27 |
-
def
|
| 28 |
-
|
| 29 |
-
transform = transforms.Compose([
|
| 30 |
transforms.Resize((224, 224)),
|
| 31 |
transforms.ToTensor(),
|
| 32 |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
| 33 |
])
|
| 34 |
-
|
| 35 |
-
# Example class names (to be replaced with actual classes from the dataset)
|
| 36 |
-
class_names = [
|
| 37 |
-
"Apple___Apple_scab",
|
| 38 |
-
"Apple___Black_rot",
|
| 39 |
-
"Apple___Cedar_apple_rust",
|
| 40 |
-
"Apple___healthy",
|
| 41 |
-
"Corn_(maize)___Cercospora_leaf_spot",
|
| 42 |
-
"Corn_(maize)___Common_rust",
|
| 43 |
-
"Corn_(maize)___healthy",
|
| 44 |
-
"Tomato___Early_blight",
|
| 45 |
-
"Tomato___Late_blight",
|
| 46 |
-
"Tomato___healthy"
|
| 47 |
-
]
|
| 48 |
-
|
| 49 |
-
return transform, class_names
|
| 50 |
|
| 51 |
-
#
|
| 52 |
-
def classify_disease(image):
|
| 53 |
-
|
|
|
|
| 54 |
|
| 55 |
# Process the image
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
class_name = class_names[class_idx]
|
| 60 |
|
| 61 |
# Extract crop and disease from class name
|
|
@@ -65,9 +127,9 @@ def classify_disease(image):
|
|
| 65 |
|
| 66 |
return crop, disease
|
| 67 |
|
| 68 |
-
return
|
| 69 |
|
| 70 |
-
#
|
| 71 |
def find_treatment(crop, disease, df):
|
| 72 |
if disease.lower() == "healthy":
|
| 73 |
return {
|
|
@@ -108,11 +170,11 @@ def find_treatment(crop, disease, df):
|
|
| 108 |
"crop": crop,
|
| 109 |
"disease": disease,
|
| 110 |
"symptoms": "Unknown",
|
| 111 |
-
"treatment": "No specific treatment information found",
|
| 112 |
-
"medicine": "Consult a plant pathologist"
|
| 113 |
}
|
| 114 |
|
| 115 |
-
#
|
| 116 |
def answer_question(question, df):
|
| 117 |
question = question.lower()
|
| 118 |
|
|
@@ -136,35 +198,40 @@ def answer_question(question, df):
|
|
| 136 |
if not matches.empty:
|
| 137 |
match = matches.iloc[0]
|
| 138 |
return f"""
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
Symptoms
|
| 142 |
-
|
| 143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
"""
|
| 145 |
|
| 146 |
# If we found only crop
|
| 147 |
elif crop_match:
|
| 148 |
matches = df[df['Crop'] == crop_match]
|
| 149 |
if not matches.empty:
|
| 150 |
-
response = f"
|
| 151 |
for _, row in matches.iterrows():
|
| 152 |
-
response += f"
|
| 153 |
-
response += f"Symptoms
|
| 154 |
-
response += f"Treatment
|
| 155 |
-
response += f"
|
| 156 |
return response
|
| 157 |
|
| 158 |
# If we found only disease
|
| 159 |
elif disease_match:
|
| 160 |
matches = df[df['Disease'] == disease_match]
|
| 161 |
if not matches.empty:
|
| 162 |
-
response = f"
|
| 163 |
for _, row in matches.iterrows():
|
| 164 |
-
response += f"
|
| 165 |
-
response += f"Symptoms
|
| 166 |
-
response += f"Treatment
|
| 167 |
-
response += f"
|
| 168 |
return response
|
| 169 |
|
| 170 |
# General search
|
|
@@ -195,80 +262,107 @@ def answer_question(question, df):
|
|
| 195 |
relevant_rows.sort(key=lambda x: x[0], reverse=True)
|
| 196 |
top_matches = relevant_rows[:3] # Get top 3 matches
|
| 197 |
|
| 198 |
-
response = "Here's what I found based on your question:\n\n"
|
| 199 |
for _, row in top_matches:
|
| 200 |
-
response += f"
|
| 201 |
-
response += f"
|
| 202 |
-
response += f"
|
| 203 |
-
response += f"
|
| 204 |
-
response += f"Medicine: {row['Medicine/Chemical Control']}\n\n"
|
| 205 |
return response
|
| 206 |
|
| 207 |
-
return "I couldn't find specific information related to your question in
|
| 208 |
|
| 209 |
-
#
|
| 210 |
-
def process_image(image, df):
|
| 211 |
if image is None:
|
| 212 |
return "Please upload an image to analyze.", None, None, None, None
|
| 213 |
|
| 214 |
# Identify the crop and disease
|
| 215 |
-
crop, disease = classify_disease(image)
|
|
|
|
|
|
|
|
|
|
| 216 |
|
| 217 |
# Get treatment information
|
| 218 |
treatment_info = find_treatment(crop, disease, df)
|
| 219 |
|
| 220 |
# Create analysis text
|
| 221 |
if disease.lower() == "healthy":
|
| 222 |
-
analysis = f"Good news!
|
| 223 |
else:
|
| 224 |
-
analysis = f"Analysis
|
| 225 |
-
analysis += f"Typical symptoms
|
| 226 |
-
analysis += f"Recommended treatment
|
|
|
|
| 227 |
|
| 228 |
return analysis, treatment_info["crop"], treatment_info["disease"], treatment_info["treatment"], treatment_info["medicine"]
|
| 229 |
|
| 230 |
-
# Main
|
| 231 |
def main():
|
| 232 |
-
# Load data
|
|
|
|
|
|
|
|
|
|
| 233 |
df = load_treatments_data()
|
| 234 |
|
| 235 |
-
# Create
|
| 236 |
-
with gr.Blocks(title="Plant Disease Assistant") as app:
|
| 237 |
-
gr.Markdown("
|
| 238 |
-
|
| 239 |
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 255 |
|
| 256 |
-
with gr.
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 268 |
|
| 269 |
# Set up event handlers
|
| 270 |
image_submit.click(
|
| 271 |
-
fn=lambda img: process_image(img, df),
|
| 272 |
inputs=[image_input],
|
| 273 |
outputs=[analysis_output, crop_output, disease_output, treatment_output, medicine_output]
|
| 274 |
)
|
|
@@ -276,7 +370,7 @@ def main():
|
|
| 276 |
question_submit.click(
|
| 277 |
fn=lambda q: (answer_question(q, df), "", "", "", ""),
|
| 278 |
inputs=[question_input],
|
| 279 |
-
outputs=[
|
| 280 |
)
|
| 281 |
|
| 282 |
# Example questions
|
|
@@ -284,14 +378,26 @@ def main():
|
|
| 284 |
examples=[
|
| 285 |
["How do I treat early blight in tomatoes?"],
|
| 286 |
["What are the symptoms of powdery mildew?"],
|
| 287 |
-
["What chemical controls work on apple scab?"]
|
|
|
|
|
|
|
| 288 |
],
|
| 289 |
inputs=question_input
|
| 290 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 291 |
|
| 292 |
return app
|
| 293 |
|
| 294 |
# Launch the app
|
| 295 |
if __name__ == "__main__":
|
| 296 |
app = main()
|
| 297 |
-
app.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import pandas as pd
|
| 3 |
import os
|
|
|
|
|
|
|
| 4 |
import torch
|
| 5 |
+
from torchvision import models, transforms
|
| 6 |
+
from PIL import Image
|
| 7 |
+
import numpy as np
|
| 8 |
+
import json
|
| 9 |
+
|
| 10 |
+
# --- Model Setup ---
|
| 11 |
+
def load_model():
|
| 12 |
+
# Load a pre-trained ResNet model
|
| 13 |
+
model = models.resnet50(pretrained=False)
|
| 14 |
+
|
| 15 |
+
# Modify the final layer for our number of classes
|
| 16 |
+
num_classes = 38 # PlantVillage has 38 classes
|
| 17 |
+
model.fc = torch.nn.Linear(model.fc.in_features, num_classes)
|
| 18 |
+
|
| 19 |
+
# Load the trained weights
|
| 20 |
+
try:
|
| 21 |
+
model.load_state_dict(torch.load('plant_disease_model.pth', map_location=torch.device('cpu')))
|
| 22 |
+
print("Model loaded successfully")
|
| 23 |
+
except:
|
| 24 |
+
print("Model weights not found, using untrained model for demonstration")
|
| 25 |
+
|
| 26 |
+
model.eval()
|
| 27 |
+
return model
|
| 28 |
+
|
| 29 |
+
# --- Data Loading ---
|
| 30 |
+
def load_class_names():
|
| 31 |
+
try:
|
| 32 |
+
with open('class_names.json', 'r') as f:
|
| 33 |
+
class_names = json.load(f)
|
| 34 |
+
print("Class names loaded successfully")
|
| 35 |
+
return class_names
|
| 36 |
+
except:
|
| 37 |
+
print("Class names file not found, using default classes")
|
| 38 |
+
# Default class names from PlantVillage dataset
|
| 39 |
+
return [
|
| 40 |
+
"Apple___Apple_scab", "Apple___Black_rot", "Apple___Cedar_apple_rust", "Apple___healthy",
|
| 41 |
+
"Cherry___healthy", "Cherry___Powdery_mildew", "Corn___Cercospora_leaf_spot",
|
| 42 |
+
"Corn___Common_rust", "Corn___healthy", "Corn___Northern_Leaf_Blight",
|
| 43 |
+
"Grape___Black_rot", "Grape___Esca_(Black_Measles)", "Grape___healthy",
|
| 44 |
+
"Grape___Leaf_blight_(Isariopsis_Leaf_Spot)", "Orange___Haunglongbing_(Citrus_greening)",
|
| 45 |
+
"Peach___Bacterial_spot", "Peach___healthy", "Pepper,_bell___Bacterial_spot",
|
| 46 |
+
"Pepper,_bell___healthy", "Potato___Early_blight", "Potato___healthy",
|
| 47 |
+
"Potato___Late_blight", "Squash___Powdery_mildew", "Strawberry___healthy",
|
| 48 |
+
"Strawberry___Leaf_scorch", "Tomato___Bacterial_spot", "Tomato___Early_blight",
|
| 49 |
+
"Tomato___healthy", "Tomato___Late_blight", "Tomato___Leaf_Mold",
|
| 50 |
+
"Tomato___Septoria_leaf_spot", "Tomato___Spider_mites Two-spotted_spider_mite",
|
| 51 |
+
"Tomato___Target_Spot", "Tomato___Tomato_mosaic_virus",
|
| 52 |
+
"Tomato___Tomato_Yellow_Leaf_Curl_Virus"
|
| 53 |
+
]
|
| 54 |
|
|
|
|
| 55 |
def load_treatments_data():
|
| 56 |
try:
|
| 57 |
+
context = pd.read_csv('crop_diseases_treatments.csv')
|
| 58 |
print("CSV file loaded successfully.")
|
| 59 |
return context
|
| 60 |
except FileNotFoundError:
|
| 61 |
print("Error: crop_diseases_treatments.csv not found.")
|
| 62 |
# Create a minimal dataframe for demonstration
|
| 63 |
return pd.DataFrame({
|
| 64 |
+
'Crop': ['Tomato', 'Apple', 'Corn', 'Potato', 'Grape', 'Cherry', 'Peach', 'Strawberry'],
|
| 65 |
+
'Disease': ['Early Blight', 'Apple Scab', 'Common Rust', 'Late Blight', 'Black Rot', 'Powdery Mildew', 'Bacterial Spot', 'Leaf Scorch'],
|
| 66 |
+
'Symptoms': [
|
| 67 |
+
'Brown spots with concentric rings on leaves',
|
| 68 |
+
'Olive-green to brown spots on leaves and fruit',
|
| 69 |
+
'Rust-colored pustules on leaves',
|
| 70 |
+
'Dark water-soaked spots on leaves that turn brown',
|
| 71 |
+
'Reddish-brown spots on leaves and fruit',
|
| 72 |
+
'White powdery coating on leaves and stems',
|
| 73 |
+
'Small brown spots on leaves and fruit',
|
| 74 |
+
'Scorched appearance on leaf margins'
|
| 75 |
+
],
|
| 76 |
+
'Treatment': [
|
| 77 |
+
'Remove affected leaves, improve air circulation, rotate crops',
|
| 78 |
+
'Prune affected branches, remove fallen leaves, apply fungicide',
|
| 79 |
+
'Remove infected plants, apply fungicide early in season',
|
| 80 |
+
'Remove infected plants, avoid overhead watering, apply fungicide',
|
| 81 |
+
'Prune infected areas, remove mummified fruit, apply fungicide',
|
| 82 |
+
'Improve air circulation, apply fungicide, remove infected parts',
|
| 83 |
+
'Copper-based sprays, crop rotation, remove infected plants',
|
| 84 |
+
'Ensure proper watering, add mulch, improve soil drainage'
|
| 85 |
+
],
|
| 86 |
+
'Medicine/Chemical Control': [
|
| 87 |
+
'Chlorothalonil, Mancozeb, Copper fungicides',
|
| 88 |
+
'Captan, Myclobutanil, Sulfur sprays',
|
| 89 |
+
'Propiconazole, Azoxystrobin, Mancozeb',
|
| 90 |
+
'Chlorothalonil, Mancozeb, Copper-based fungicides',
|
| 91 |
+
'Captan, Myclobutanil, Mancozeb',
|
| 92 |
+
'Sulfur, Potassium bicarbonate, Neem oil',
|
| 93 |
+
'Copper hydroxide, Streptomycin sulfate',
|
| 94 |
+
'Calcium nitrate sprays, Fungicides with Captan'
|
| 95 |
+
]
|
| 96 |
})
|
| 97 |
|
| 98 |
+
# --- Image Processing ---
|
| 99 |
+
def prepare_image_transform():
|
| 100 |
+
return transforms.Compose([
|
|
|
|
| 101 |
transforms.Resize((224, 224)),
|
| 102 |
transforms.ToTensor(),
|
| 103 |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
| 104 |
])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
|
| 106 |
+
# --- Disease Classification ---
|
| 107 |
+
def classify_disease(image, model, class_names, transform):
|
| 108 |
+
if image is None:
|
| 109 |
+
return None, None
|
| 110 |
|
| 111 |
# Process the image
|
| 112 |
+
img_tensor = transform(image).unsqueeze(0)
|
| 113 |
+
|
| 114 |
+
# Make prediction
|
| 115 |
+
with torch.no_grad():
|
| 116 |
+
outputs = model(img_tensor)
|
| 117 |
+
_, predicted = torch.max(outputs, 1)
|
| 118 |
+
class_idx = predicted.item()
|
| 119 |
+
|
| 120 |
+
if class_idx < len(class_names):
|
| 121 |
class_name = class_names[class_idx]
|
| 122 |
|
| 123 |
# Extract crop and disease from class name
|
|
|
|
| 127 |
|
| 128 |
return crop, disease
|
| 129 |
|
| 130 |
+
return "Unknown", "Unknown"
|
| 131 |
|
| 132 |
+
# --- Treatment Lookup ---
|
| 133 |
def find_treatment(crop, disease, df):
|
| 134 |
if disease.lower() == "healthy":
|
| 135 |
return {
|
|
|
|
| 170 |
"crop": crop,
|
| 171 |
"disease": disease,
|
| 172 |
"symptoms": "Unknown",
|
| 173 |
+
"treatment": "No specific treatment information found. General advice: Remove affected parts, ensure proper spacing for air circulation, and consider organic or chemical fungicides appropriate for your region.",
|
| 174 |
+
"medicine": "Consult a local agricultural extension office or plant pathologist for specific recommendations for your region."
|
| 175 |
}
|
| 176 |
|
| 177 |
+
# --- Q&A Function ---
|
| 178 |
def answer_question(question, df):
|
| 179 |
question = question.lower()
|
| 180 |
|
|
|
|
| 198 |
if not matches.empty:
|
| 199 |
match = matches.iloc[0]
|
| 200 |
return f"""
|
| 201 |
+
## {match['Crop']} - {match['Disease']}
|
| 202 |
+
|
| 203 |
+
**Symptoms:**
|
| 204 |
+
{match['Symptoms']}
|
| 205 |
+
|
| 206 |
+
**Treatment:**
|
| 207 |
+
{match['Treatment']}
|
| 208 |
+
|
| 209 |
+
**Recommended Products:**
|
| 210 |
+
{match['Medicine/Chemical Control']}
|
| 211 |
"""
|
| 212 |
|
| 213 |
# If we found only crop
|
| 214 |
elif crop_match:
|
| 215 |
matches = df[df['Crop'] == crop_match]
|
| 216 |
if not matches.empty:
|
| 217 |
+
response = f"## Common Diseases Affecting {crop_match}\n\n"
|
| 218 |
for _, row in matches.iterrows():
|
| 219 |
+
response += f"### {row['Disease']}\n"
|
| 220 |
+
response += f"**Symptoms:** {row['Symptoms']}\n\n"
|
| 221 |
+
response += f"**Treatment:** {row['Treatment']}\n\n"
|
| 222 |
+
response += f"**Products:** {row['Medicine/Chemical Control']}\n\n"
|
| 223 |
return response
|
| 224 |
|
| 225 |
# If we found only disease
|
| 226 |
elif disease_match:
|
| 227 |
matches = df[df['Disease'] == disease_match]
|
| 228 |
if not matches.empty:
|
| 229 |
+
response = f"## {disease_match} in Different Crops\n\n"
|
| 230 |
for _, row in matches.iterrows():
|
| 231 |
+
response += f"### {row['Crop']}\n"
|
| 232 |
+
response += f"**Symptoms:** {row['Symptoms']}\n\n"
|
| 233 |
+
response += f"**Treatment:** {row['Treatment']}\n\n"
|
| 234 |
+
response += f"**Products:** {row['Medicine/Chemical Control']}\n\n"
|
| 235 |
return response
|
| 236 |
|
| 237 |
# General search
|
|
|
|
| 262 |
relevant_rows.sort(key=lambda x: x[0], reverse=True)
|
| 263 |
top_matches = relevant_rows[:3] # Get top 3 matches
|
| 264 |
|
| 265 |
+
response = "## Here's what I found based on your question:\n\n"
|
| 266 |
for _, row in top_matches:
|
| 267 |
+
response += f"### {row['Crop']} - {row['Disease']}\n"
|
| 268 |
+
response += f"**Symptoms:** {row['Symptoms']}\n\n"
|
| 269 |
+
response += f"**Treatment:** {row['Treatment']}\n\n"
|
| 270 |
+
response += f"**Products:** {row['Medicine/Chemical Control']}\n\n"
|
|
|
|
| 271 |
return response
|
| 272 |
|
| 273 |
+
return "I couldn't find specific information related to your question in my database. Please try asking about specific crops or diseases, or upload an image for analysis."
|
| 274 |
|
| 275 |
+
# --- Image Processing Function ---
|
| 276 |
+
def process_image(image, model, class_names, transform, df):
|
| 277 |
if image is None:
|
| 278 |
return "Please upload an image to analyze.", None, None, None, None
|
| 279 |
|
| 280 |
# Identify the crop and disease
|
| 281 |
+
crop, disease = classify_disease(image, model, class_names, transform)
|
| 282 |
+
|
| 283 |
+
if crop is None or disease is None:
|
| 284 |
+
return "Unable to analyze the image. Please try a clearer image of a plant leaf.", None, None, None, None
|
| 285 |
|
| 286 |
# Get treatment information
|
| 287 |
treatment_info = find_treatment(crop, disease, df)
|
| 288 |
|
| 289 |
# Create analysis text
|
| 290 |
if disease.lower() == "healthy":
|
| 291 |
+
analysis = f"## Good news! \nThis {crop} plant appears to be healthy."
|
| 292 |
else:
|
| 293 |
+
analysis = f"## Analysis Results\n\nThis {crop} plant appears to be affected by **{disease}**.\n\n"
|
| 294 |
+
analysis += f"**Typical symptoms:**\n{treatment_info['symptoms']}\n\n"
|
| 295 |
+
analysis += f"**Recommended treatment:**\n{treatment_info['treatment']}\n\n"
|
| 296 |
+
analysis += f"**Recommended products:**\n{treatment_info['medicine']}"
|
| 297 |
|
| 298 |
return analysis, treatment_info["crop"], treatment_info["disease"], treatment_info["treatment"], treatment_info["medicine"]
|
| 299 |
|
| 300 |
+
# --- Main Function ---
|
| 301 |
def main():
|
| 302 |
+
# Load model and data
|
| 303 |
+
model = load_model()
|
| 304 |
+
class_names = load_class_names()
|
| 305 |
+
transform = prepare_image_transform()
|
| 306 |
df = load_treatments_data()
|
| 307 |
|
| 308 |
+
# Create Gradio interface
|
| 309 |
+
with gr.Blocks(title="Plant Disease Assistant", css="footer {visibility: hidden}") as app:
|
| 310 |
+
gr.Markdown("""
|
| 311 |
+
# 🌱 Plant Disease Treatment Assistant
|
| 312 |
|
| 313 |
+
Upload a plant image or ask a question to get disease identification and treatment information.
|
| 314 |
+
This tool uses a machine learning model trained on the PlantVillage dataset to identify plant diseases.
|
| 315 |
+
""")
|
| 316 |
+
|
| 317 |
+
with gr.Tabs():
|
| 318 |
+
with gr.TabItem("Image Analysis"):
|
| 319 |
+
with gr.Row():
|
| 320 |
+
with gr.Column(scale=1):
|
| 321 |
+
image_input = gr.Image(type="pil", label="Upload Plant Image")
|
| 322 |
+
image_submit = gr.Button("Analyze Image", variant="primary")
|
| 323 |
+
|
| 324 |
+
gr.Markdown("""
|
| 325 |
+
### Tips for best results:
|
| 326 |
+
- Upload a clear, well-lit image
|
| 327 |
+
- Focus on affected leaves or plant parts
|
| 328 |
+
- Include multiple symptoms if possible
|
| 329 |
+
""")
|
| 330 |
+
|
| 331 |
+
with gr.Column(scale=2):
|
| 332 |
+
analysis_output = gr.Markdown(label="Analysis")
|
| 333 |
+
|
| 334 |
+
with gr.Group():
|
| 335 |
+
gr.Markdown("### Plant Information")
|
| 336 |
+
with gr.Row():
|
| 337 |
+
crop_output = gr.Textbox(label="Crop")
|
| 338 |
+
disease_output = gr.Textbox(label="Disease")
|
| 339 |
+
treatment_output = gr.Textbox(label="Treatment", lines=3)
|
| 340 |
+
medicine_output = gr.Textbox(label="Recommended Products", lines=3)
|
| 341 |
|
| 342 |
+
with gr.TabItem("Q&A"):
|
| 343 |
+
with gr.Row():
|
| 344 |
+
with gr.Column():
|
| 345 |
+
question_input = gr.Textbox(
|
| 346 |
+
lines=2,
|
| 347 |
+
placeholder="Ask a question like 'How do I treat early blight in tomatoes?'",
|
| 348 |
+
label="Your Question"
|
| 349 |
+
)
|
| 350 |
+
question_submit = gr.Button("Get Answer", variant="primary")
|
| 351 |
+
|
| 352 |
+
gr.Markdown("""
|
| 353 |
+
### Example questions:
|
| 354 |
+
- How do I treat early blight in tomatoes?
|
| 355 |
+
- What are the symptoms of powdery mildew?
|
| 356 |
+
- What chemical controls work on apple scab?
|
| 357 |
+
- What causes leaf curl in peach trees?
|
| 358 |
+
""")
|
| 359 |
+
|
| 360 |
+
with gr.Column():
|
| 361 |
+
qa_output = gr.Markdown(label="Answer")
|
| 362 |
|
| 363 |
# Set up event handlers
|
| 364 |
image_submit.click(
|
| 365 |
+
fn=lambda img: process_image(img, model, class_names, transform, df),
|
| 366 |
inputs=[image_input],
|
| 367 |
outputs=[analysis_output, crop_output, disease_output, treatment_output, medicine_output]
|
| 368 |
)
|
|
|
|
| 370 |
question_submit.click(
|
| 371 |
fn=lambda q: (answer_question(q, df), "", "", "", ""),
|
| 372 |
inputs=[question_input],
|
| 373 |
+
outputs=[qa_output, crop_output, disease_output, treatment_output, medicine_output]
|
| 374 |
)
|
| 375 |
|
| 376 |
# Example questions
|
|
|
|
| 378 |
examples=[
|
| 379 |
["How do I treat early blight in tomatoes?"],
|
| 380 |
["What are the symptoms of powdery mildew?"],
|
| 381 |
+
["What chemical controls work on apple scab?"],
|
| 382 |
+
["How can I prevent late blight in potatoes?"],
|
| 383 |
+
["What causes black spots on rose leaves?"]
|
| 384 |
],
|
| 385 |
inputs=question_input
|
| 386 |
)
|
| 387 |
+
|
| 388 |
+
# Example images
|
| 389 |
+
gr.Examples(
|
| 390 |
+
examples=[
|
| 391 |
+
"example_images/tomato_early_blight.jpg",
|
| 392 |
+
"example_images/apple_scab.jpg",
|
| 393 |
+
"example_images/corn_rust.jpg"
|
| 394 |
+
],
|
| 395 |
+
inputs=image_input
|
| 396 |
+
)
|
| 397 |
|
| 398 |
return app
|
| 399 |
|
| 400 |
# Launch the app
|
| 401 |
if __name__ == "__main__":
|
| 402 |
app = main()
|
| 403 |
+
app.launch()
|