Update app.py
Browse files
app.py
CHANGED
|
@@ -1,44 +1,27 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import pandas as pd
|
| 3 |
import os
|
|
|
|
| 4 |
from PIL import Image
|
|
|
|
| 5 |
from torchvision import transforms
|
| 6 |
-
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 7 |
-
from langchain_groq import ChatGroq
|
| 8 |
|
| 9 |
# --- Load CSV Data ---
|
| 10 |
def load_treatments_data():
|
| 11 |
try:
|
| 12 |
context = pd.read_csv('./crop_diseases_treatments.csv')
|
| 13 |
print("CSV file loaded successfully.")
|
| 14 |
-
|
| 15 |
-
for i in range(len(context)):
|
| 16 |
-
contextn = ""
|
| 17 |
-
for j in range(len(context.columns)):
|
| 18 |
-
contextn += context.columns[j] + ":" + str(context.iloc[i][j]) + " "
|
| 19 |
-
context_data.append(contextn)
|
| 20 |
-
return context, context_data
|
| 21 |
except FileNotFoundError:
|
| 22 |
print("Error: crop_diseases_treatments.csv not found.")
|
| 23 |
# Create a minimal dataframe for demonstration
|
| 24 |
return pd.DataFrame({
|
| 25 |
-
'Crop': ['Tomato', 'Apple'],
|
| 26 |
-
'Disease': ['Early Blight', 'Apple Scab'],
|
| 27 |
-
'Symptoms': ['Yellow spots on leaves', 'Dark scab-like lesions'],
|
| 28 |
-
'Treatment': ['Remove affected leaves', 'Prune affected branches'],
|
| 29 |
-
'Medicine/Chemical Control': ['Copper fungicide', 'Sulfur spray']
|
| 30 |
-
})
|
| 31 |
-
|
| 32 |
-
# --- Load Groq LLM ---
|
| 33 |
-
def initialize_llm():
|
| 34 |
-
groq_key = os.environ.get('GROQ_API_KEY')
|
| 35 |
-
if not groq_key:
|
| 36 |
-
print("Warning: GROQ_API_KEY not found in environment variables. The chatbot may not work.")
|
| 37 |
-
return ChatGroq(model="llama-3.3-70b-versatile", api_key=groq_key)
|
| 38 |
-
|
| 39 |
-
# --- Load Embedding Model ---
|
| 40 |
-
def initialize_embedding_model():
|
| 41 |
-
return HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")
|
| 42 |
|
| 43 |
# --- Disease Classification ---
|
| 44 |
def prepare_disease_classifier():
|
|
@@ -71,10 +54,7 @@ def classify_disease(image):
|
|
| 71 |
|
| 72 |
# Process the image
|
| 73 |
if image is not None:
|
| 74 |
-
img_tensor = transform(image).unsqueeze(0)
|
| 75 |
-
|
| 76 |
# For demonstration, we'll randomly select a class
|
| 77 |
-
import random
|
| 78 |
class_idx = random.randint(0, len(class_names) - 1)
|
| 79 |
class_name = class_names[class_idx]
|
| 80 |
|
|
@@ -132,41 +112,102 @@ def find_treatment(crop, disease, df):
|
|
| 132 |
"medicine": "Consult a plant pathologist"
|
| 133 |
}
|
| 134 |
|
| 135 |
-
#
|
| 136 |
-
def
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
for
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
|
| 149 |
-
|
| 150 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
|
| 152 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 153 |
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
Treatment: [treatment recommendations]
|
| 158 |
-
Medicine: [chemical control options]
|
| 159 |
-
"""
|
| 160 |
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 167 |
|
| 168 |
# Function to process image uploads
|
| 169 |
-
def process_image(image, df
|
| 170 |
if image is None:
|
| 171 |
return "Please upload an image to analyze.", None, None, None, None
|
| 172 |
|
|
@@ -176,37 +217,20 @@ def process_image(image, df, llm):
|
|
| 176 |
# Get treatment information
|
| 177 |
treatment_info = find_treatment(crop, disease, df)
|
| 178 |
|
| 179 |
-
#
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
Based on the database information, this appears to be {disease} affecting {crop}.
|
| 187 |
-
|
| 188 |
-
Provide a detailed analysis with the following format:
|
| 189 |
-
Crop: {crop}
|
| 190 |
-
Disease: {disease}
|
| 191 |
-
Symptoms: [describe typical symptoms]
|
| 192 |
-
Treatment: [provide treatment recommendations]
|
| 193 |
-
Medicine: [suggest chemical control options]
|
| 194 |
-
"""
|
| 195 |
|
| 196 |
-
|
| 197 |
-
# Get enhanced analysis from Groq
|
| 198 |
-
groq_analysis = llm.invoke(prompt)
|
| 199 |
-
return groq_analysis.content, treatment_info["crop"], treatment_info["disease"], treatment_info["treatment"], treatment_info["medicine"]
|
| 200 |
-
except Exception as e:
|
| 201 |
-
# Fallback to basic information if Groq fails
|
| 202 |
-
return f"Analysis: {crop} affected by {disease}", treatment_info["crop"], treatment_info["disease"], treatment_info["treatment"], treatment_info["medicine"]
|
| 203 |
|
| 204 |
# Main function to set up the Gradio interface
|
| 205 |
def main():
|
| 206 |
-
# Load data
|
| 207 |
-
df
|
| 208 |
-
llm = initialize_llm()
|
| 209 |
-
embed_model = initialize_embedding_model()
|
| 210 |
|
| 211 |
# Create a simplified Gradio interface
|
| 212 |
with gr.Blocks(title="Plant Disease Assistant") as app:
|
|
@@ -244,13 +268,13 @@ def main():
|
|
| 244 |
|
| 245 |
# Set up event handlers
|
| 246 |
image_submit.click(
|
| 247 |
-
fn=lambda img: process_image(img, df
|
| 248 |
inputs=[image_input],
|
| 249 |
outputs=[analysis_output, crop_output, disease_output, treatment_output, medicine_output]
|
| 250 |
)
|
| 251 |
|
| 252 |
question_submit.click(
|
| 253 |
-
fn=lambda q: (
|
| 254 |
inputs=[question_input],
|
| 255 |
outputs=[analysis_output, crop_output, disease_output, treatment_output, medicine_output]
|
| 256 |
)
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import pandas as pd
|
| 3 |
import os
|
| 4 |
+
import random
|
| 5 |
from PIL import Image
|
| 6 |
+
import torch
|
| 7 |
from torchvision import transforms
|
|
|
|
|
|
|
| 8 |
|
| 9 |
# --- Load CSV Data ---
|
| 10 |
def load_treatments_data():
|
| 11 |
try:
|
| 12 |
context = pd.read_csv('./crop_diseases_treatments.csv')
|
| 13 |
print("CSV file loaded successfully.")
|
| 14 |
+
return context
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
except FileNotFoundError:
|
| 16 |
print("Error: crop_diseases_treatments.csv not found.")
|
| 17 |
# Create a minimal dataframe for demonstration
|
| 18 |
return pd.DataFrame({
|
| 19 |
+
'Crop': ['Tomato', 'Apple', 'Corn', 'Rice', 'Potato'],
|
| 20 |
+
'Disease': ['Early Blight', 'Apple Scab', 'Common Rust', 'Bacterial Leaf Blight', 'Late Blight'],
|
| 21 |
+
'Symptoms': ['Yellow spots on leaves', 'Dark scab-like lesions', 'Rust-colored pustules', 'Yellow-orange lesions', 'Dark water-soaked spots'],
|
| 22 |
+
'Treatment': ['Remove affected leaves', 'Prune affected branches', 'Remove infected plants', 'Drain fields', 'Apply fungicide early'],
|
| 23 |
+
'Medicine/Chemical Control': ['Copper fungicide', 'Sulfur spray', 'Propiconazole', 'Streptomycin sulfate', 'Chlorothalonil']
|
| 24 |
+
})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
# --- Disease Classification ---
|
| 27 |
def prepare_disease_classifier():
|
|
|
|
| 54 |
|
| 55 |
# Process the image
|
| 56 |
if image is not None:
|
|
|
|
|
|
|
| 57 |
# For demonstration, we'll randomly select a class
|
|
|
|
| 58 |
class_idx = random.randint(0, len(class_names) - 1)
|
| 59 |
class_name = class_names[class_idx]
|
| 60 |
|
|
|
|
| 112 |
"medicine": "Consult a plant pathologist"
|
| 113 |
}
|
| 114 |
|
| 115 |
+
# Simple function to answer questions based on the database
|
| 116 |
+
def answer_question(question, df):
|
| 117 |
+
question = question.lower()
|
| 118 |
+
|
| 119 |
+
# Look for crop and disease mentions in the question
|
| 120 |
+
crop_match = None
|
| 121 |
+
disease_match = None
|
| 122 |
+
|
| 123 |
+
for crop in df['Crop'].unique():
|
| 124 |
+
if crop.lower() in question:
|
| 125 |
+
crop_match = crop
|
| 126 |
+
break
|
| 127 |
|
| 128 |
+
for disease in df['Disease'].unique():
|
| 129 |
+
if disease.lower() in question:
|
| 130 |
+
disease_match = disease
|
| 131 |
+
break
|
| 132 |
|
| 133 |
+
# If we found both crop and disease
|
| 134 |
+
if crop_match and disease_match:
|
| 135 |
+
matches = df[(df['Crop'] == crop_match) & (df['Disease'] == disease_match)]
|
| 136 |
+
if not matches.empty:
|
| 137 |
+
match = matches.iloc[0]
|
| 138 |
+
return f"""
|
| 139 |
+
Crop: {match['Crop']}
|
| 140 |
+
Disease: {match['Disease']}
|
| 141 |
+
Symptoms: {match['Symptoms']}
|
| 142 |
+
Treatment: {match['Treatment']}
|
| 143 |
+
Medicine: {match['Medicine/Chemical Control']}
|
| 144 |
+
"""
|
| 145 |
+
|
| 146 |
+
# If we found only crop
|
| 147 |
+
elif crop_match:
|
| 148 |
+
matches = df[df['Crop'] == crop_match]
|
| 149 |
+
if not matches.empty:
|
| 150 |
+
response = f"Information about diseases affecting {crop_match}:\n\n"
|
| 151 |
+
for _, row in matches.iterrows():
|
| 152 |
+
response += f"Disease: {row['Disease']}\n"
|
| 153 |
+
response += f"Symptoms: {row['Symptoms']}\n"
|
| 154 |
+
response += f"Treatment: {row['Treatment']}\n"
|
| 155 |
+
response += f"Medicine: {row['Medicine/Chemical Control']}\n\n"
|
| 156 |
+
return response
|
| 157 |
|
| 158 |
+
# If we found only disease
|
| 159 |
+
elif disease_match:
|
| 160 |
+
matches = df[df['Disease'] == disease_match]
|
| 161 |
+
if not matches.empty:
|
| 162 |
+
response = f"Information about {disease_match} affecting various crops:\n\n"
|
| 163 |
+
for _, row in matches.iterrows():
|
| 164 |
+
response += f"Crop: {row['Crop']}\n"
|
| 165 |
+
response += f"Symptoms: {row['Symptoms']}\n"
|
| 166 |
+
response += f"Treatment: {row['Treatment']}\n"
|
| 167 |
+
response += f"Medicine: {row['Medicine/Chemical Control']}\n\n"
|
| 168 |
+
return response
|
| 169 |
|
| 170 |
+
# General search
|
| 171 |
+
keywords = question.split()
|
| 172 |
+
relevant_rows = []
|
|
|
|
|
|
|
|
|
|
| 173 |
|
| 174 |
+
for _, row in df.iterrows():
|
| 175 |
+
score = 0
|
| 176 |
+
for keyword in keywords:
|
| 177 |
+
if len(keyword) < 3: # Skip short words
|
| 178 |
+
continue
|
| 179 |
+
if keyword in str(row['Crop']).lower():
|
| 180 |
+
score += 3
|
| 181 |
+
if keyword in str(row['Disease']).lower():
|
| 182 |
+
score += 5
|
| 183 |
+
if keyword in str(row['Symptoms']).lower():
|
| 184 |
+
score += 2
|
| 185 |
+
if keyword in str(row['Treatment']).lower():
|
| 186 |
+
score += 1
|
| 187 |
+
if keyword in str(row['Medicine/Chemical Control']).lower():
|
| 188 |
+
score += 1
|
| 189 |
+
|
| 190 |
+
if score > 0:
|
| 191 |
+
relevant_rows.append((score, row))
|
| 192 |
+
|
| 193 |
+
if relevant_rows:
|
| 194 |
+
# Sort by relevance score
|
| 195 |
+
relevant_rows.sort(key=lambda x: x[0], reverse=True)
|
| 196 |
+
top_matches = relevant_rows[:3] # Get top 3 matches
|
| 197 |
+
|
| 198 |
+
response = "Here's what I found based on your question:\n\n"
|
| 199 |
+
for _, row in top_matches:
|
| 200 |
+
response += f"Crop: {row['Crop']}\n"
|
| 201 |
+
response += f"Disease: {row['Disease']}\n"
|
| 202 |
+
response += f"Symptoms: {row['Symptoms']}\n"
|
| 203 |
+
response += f"Treatment: {row['Treatment']}\n"
|
| 204 |
+
response += f"Medicine: {row['Medicine/Chemical Control']}\n\n"
|
| 205 |
+
return response
|
| 206 |
+
|
| 207 |
+
return "I couldn't find specific information related to your question in the database. Please try asking about specific crops or diseases."
|
| 208 |
|
| 209 |
# Function to process image uploads
|
| 210 |
+
def process_image(image, df):
|
| 211 |
if image is None:
|
| 212 |
return "Please upload an image to analyze.", None, None, None, None
|
| 213 |
|
|
|
|
| 217 |
# Get treatment information
|
| 218 |
treatment_info = find_treatment(crop, disease, df)
|
| 219 |
|
| 220 |
+
# Create analysis text
|
| 221 |
+
if disease.lower() == "healthy":
|
| 222 |
+
analysis = f"Good news! This {crop} plant appears to be healthy."
|
| 223 |
+
else:
|
| 224 |
+
analysis = f"Analysis: This {crop} plant appears to be affected by {disease}.\n\n"
|
| 225 |
+
analysis += f"Typical symptoms of {disease} include {treatment_info['symptoms']}.\n\n"
|
| 226 |
+
analysis += f"Recommended treatment: {treatment_info['treatment']}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 227 |
|
| 228 |
+
return analysis, treatment_info["crop"], treatment_info["disease"], treatment_info["treatment"], treatment_info["medicine"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 229 |
|
| 230 |
# Main function to set up the Gradio interface
|
| 231 |
def main():
|
| 232 |
+
# Load data
|
| 233 |
+
df = load_treatments_data()
|
|
|
|
|
|
|
| 234 |
|
| 235 |
# Create a simplified Gradio interface
|
| 236 |
with gr.Blocks(title="Plant Disease Assistant") as app:
|
|
|
|
| 268 |
|
| 269 |
# Set up event handlers
|
| 270 |
image_submit.click(
|
| 271 |
+
fn=lambda img: process_image(img, df),
|
| 272 |
inputs=[image_input],
|
| 273 |
outputs=[analysis_output, crop_output, disease_output, treatment_output, medicine_output]
|
| 274 |
)
|
| 275 |
|
| 276 |
question_submit.click(
|
| 277 |
+
fn=lambda q: (answer_question(q, df), "", "", "", ""),
|
| 278 |
inputs=[question_input],
|
| 279 |
outputs=[analysis_output, crop_output, disease_output, treatment_output, medicine_output]
|
| 280 |
)
|