Create train_model.py
Browse files- train_model.py +145 -0
train_model.py
ADDED
|
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
import torch.optim as optim
|
| 5 |
+
from torch.utils.data import DataLoader
|
| 6 |
+
from torchvision import datasets, models, transforms
|
| 7 |
+
import json
|
| 8 |
+
from tqdm import tqdm
|
| 9 |
+
|
| 10 |
+
def train_model():
|
| 11 |
+
# Set device
|
| 12 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 13 |
+
print(f"Using device: {device}")
|
| 14 |
+
|
| 15 |
+
# Data transformations
|
| 16 |
+
data_transforms = {
|
| 17 |
+
'train': transforms.Compose([
|
| 18 |
+
transforms.RandomResizedCrop(224),
|
| 19 |
+
transforms.RandomHorizontalFlip(),
|
| 20 |
+
transforms.RandomRotation(15),
|
| 21 |
+
transforms.ColorJitter(brightness=0.1, contrast=0.1, saturation=0.1, hue=0.1),
|
| 22 |
+
transforms.ToTensor(),
|
| 23 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
| 24 |
+
]),
|
| 25 |
+
'val': transforms.Compose([
|
| 26 |
+
transforms.Resize(256),
|
| 27 |
+
transforms.CenterCrop(224),
|
| 28 |
+
transforms.ToTensor(),
|
| 29 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
| 30 |
+
]),
|
| 31 |
+
}
|
| 32 |
+
|
| 33 |
+
# Load the dataset
|
| 34 |
+
data_dir = 'PlantVillage' # Update this to your dataset path
|
| 35 |
+
|
| 36 |
+
try:
|
| 37 |
+
image_datasets = {
|
| 38 |
+
'train': datasets.ImageFolder(os.path.join(data_dir, 'train'), data_transforms['train']),
|
| 39 |
+
'val': datasets.ImageFolder(os.path.join(data_dir, 'val'), data_transforms['val'])
|
| 40 |
+
}
|
| 41 |
+
|
| 42 |
+
dataloaders = {
|
| 43 |
+
'train': DataLoader(image_datasets['train'], batch_size=32, shuffle=True, num_workers=4),
|
| 44 |
+
'val': DataLoader(image_datasets['val'], batch_size=32, shuffle=False, num_workers=4)
|
| 45 |
+
}
|
| 46 |
+
|
| 47 |
+
dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']}
|
| 48 |
+
class_names = image_datasets['train'].classes
|
| 49 |
+
|
| 50 |
+
# Save class names to a JSON file
|
| 51 |
+
with open('class_names.json', 'w') as f:
|
| 52 |
+
json.dump(class_names, f)
|
| 53 |
+
|
| 54 |
+
print(f"Dataset loaded successfully with {len(class_names)} classes")
|
| 55 |
+
print(f"Training set size: {dataset_sizes['train']}")
|
| 56 |
+
print(f"Validation set size: {dataset_sizes['val']}")
|
| 57 |
+
|
| 58 |
+
# Load a pre-trained model
|
| 59 |
+
model = models.resnet50(pretrained=True)
|
| 60 |
+
|
| 61 |
+
# Modify the final layer for our number of classes
|
| 62 |
+
num_ftrs = model.fc.in_features
|
| 63 |
+
model.fc = nn.Linear(num_ftrs, len(class_names))
|
| 64 |
+
|
| 65 |
+
model = model.to(device)
|
| 66 |
+
|
| 67 |
+
# Define loss function and optimizer
|
| 68 |
+
criterion = nn.CrossEntropyLoss()
|
| 69 |
+
optimizer = optim.Adam(model.parameters(), lr=0.001)
|
| 70 |
+
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=7, gamma=0.1)
|
| 71 |
+
|
| 72 |
+
# Train the model
|
| 73 |
+
num_epochs = 10
|
| 74 |
+
best_acc = 0.0
|
| 75 |
+
|
| 76 |
+
for epoch in range(num_epochs):
|
| 77 |
+
print(f'Epoch {epoch+1}/{num_epochs}')
|
| 78 |
+
print('-' * 10)
|
| 79 |
+
|
| 80 |
+
# Each epoch has a training and validation phase
|
| 81 |
+
for phase in ['train', 'val']:
|
| 82 |
+
if phase == 'train':
|
| 83 |
+
model.train()
|
| 84 |
+
else:
|
| 85 |
+
model.eval()
|
| 86 |
+
|
| 87 |
+
running_loss = 0.0
|
| 88 |
+
running_corrects = 0
|
| 89 |
+
|
| 90 |
+
# Iterate over data
|
| 91 |
+
for inputs, labels in tqdm(dataloaders[phase]):
|
| 92 |
+
inputs = inputs.to(device)
|
| 93 |
+
labels = labels.to(device)
|
| 94 |
+
|
| 95 |
+
# Zero the parameter gradients
|
| 96 |
+
optimizer.zero_grad()
|
| 97 |
+
|
| 98 |
+
# Forward pass
|
| 99 |
+
with torch.set_grad_enabled(phase == 'train'):
|
| 100 |
+
outputs = model(inputs)
|
| 101 |
+
_, preds = torch.max(outputs, 1)
|
| 102 |
+
loss = criterion(outputs, labels)
|
| 103 |
+
|
| 104 |
+
# Backward + optimize only if in training phase
|
| 105 |
+
if phase == 'train':
|
| 106 |
+
loss.backward()
|
| 107 |
+
optimizer.step()
|
| 108 |
+
|
| 109 |
+
# Statistics
|
| 110 |
+
running_loss += loss.item() * inputs.size(0)
|
| 111 |
+
running_corrects += torch.sum(preds == labels.data)
|
| 112 |
+
|
| 113 |
+
if phase == 'train':
|
| 114 |
+
scheduler.step()
|
| 115 |
+
|
| 116 |
+
epoch_loss = running_loss / dataset_sizes[phase]
|
| 117 |
+
epoch_acc = running_corrects.double() / dataset_sizes[phase]
|
| 118 |
+
|
| 119 |
+
print(f'{phase} Loss: {epoch_loss:.4f} Acc: {epoch_acc:.4f}')
|
| 120 |
+
|
| 121 |
+
# Save the best model
|
| 122 |
+
if phase == 'val' and epoch_acc > best_acc:
|
| 123 |
+
best_acc = epoch_acc
|
| 124 |
+
torch.save(model.state_dict(), 'plant_disease_model.pth')
|
| 125 |
+
|
| 126 |
+
print()
|
| 127 |
+
|
| 128 |
+
print(f'Best val Acc: {best_acc:.4f}')
|
| 129 |
+
print('Model saved as plant_disease_model.pth')
|
| 130 |
+
|
| 131 |
+
except Exception as e:
|
| 132 |
+
print(f"Error during training: {e}")
|
| 133 |
+
print("Please make sure the dataset is properly organized in the following structure:")
|
| 134 |
+
print("PlantVillage/")
|
| 135 |
+
print("βββ train/")
|
| 136 |
+
print("β βββ Apple___Apple_scab/")
|
| 137 |
+
print("β βββ Apple___Black_rot/")
|
| 138 |
+
print("β βββ ... (other classes)")
|
| 139 |
+
print("βββ val/")
|
| 140 |
+
print(" βββ Apple___Apple_scab/")
|
| 141 |
+
print(" βββ Apple___Black_rot/")
|
| 142 |
+
print(" βββ ... (other classes)")
|
| 143 |
+
|
| 144 |
+
if __name__ == "__main__":
|
| 145 |
+
train_model()
|