Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,13 +1,13 @@
|
|
| 1 |
-
# no
|
| 2 |
-
#TODO: update to gpu usage
|
| 3 |
from transformers import pipeline, SamModel, SamProcessor
|
| 4 |
import torch
|
| 5 |
import numpy as np
|
| 6 |
import spaces
|
| 7 |
|
|
|
|
| 8 |
checkpoint = "google/owlv2-base-patch16-ensemble"
|
| 9 |
-
detector = pipeline(model=checkpoint, task="zero-shot-object-detection")
|
| 10 |
-
sam_model = SamModel.from_pretrained("jadechoghari/robustsam-vit-base")
|
| 11 |
sam_processor = SamProcessor.from_pretrained("jadechoghari/robustsam-vit-base")
|
| 12 |
|
| 13 |
|
|
@@ -23,57 +23,54 @@ def query(image, texts, threshold):
|
|
| 23 |
result_labels = []
|
| 24 |
for pred in predictions:
|
| 25 |
|
| 26 |
-
|
| 27 |
score = pred["score"]
|
| 28 |
-
label = pred["label"]
|
| 29 |
-
box = [round(pred["box"]["xmin"], 2), round(pred["box"]["ymin"], 2),
|
| 30 |
-
round(pred["box"]["xmax"], 2), round(pred["box"]["ymax"], 2)]
|
| 31 |
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
|
| 38 |
-
|
| 39 |
-
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
inputs["original_sizes"].cpu(),
|
| 44 |
-
inputs["reshaped_input_sizes"].cpu()
|
| 45 |
-
)[0][0][0].numpy()
|
| 46 |
-
mask = mask[np.newaxis, ...]
|
| 47 |
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
image.paste(mask_image, (0, 0), alpha_mask) # Overlay the mask on the image
|
| 57 |
-
|
| 58 |
-
# Save the annotated image
|
| 59 |
-
image.save("annotated_image.png")
|
| 60 |
-
print("saved image")
|
| 61 |
-
result_labels.append((mask, label))
|
| 62 |
return image, result_labels
|
| 63 |
|
| 64 |
import gradio as gr
|
| 65 |
|
| 66 |
-
description =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
demo = gr.Interface(
|
| 68 |
query,
|
| 69 |
inputs=[gr.Image(type="pil", label="Image Input"), gr.Textbox(label = "Candidate Labels"), gr.Slider(0, 1, value=0.05, label="Confidence Threshold")],
|
| 70 |
-
# outputs="annotatedimage", #comment this out - it looks weird
|
| 71 |
outputs=gr.AnnotatedImage(label="Segmented Image"),
|
| 72 |
-
title="
|
| 73 |
description=description,
|
| 74 |
examples=[
|
| 75 |
-
["./
|
|
|
|
|
|
|
|
|
|
| 76 |
],
|
| 77 |
cache_examples=True
|
| 78 |
)
|
| 79 |
-
demo.launch(
|
|
|
|
| 1 |
+
# no gpu required
|
|
|
|
| 2 |
from transformers import pipeline, SamModel, SamProcessor
|
| 3 |
import torch
|
| 4 |
import numpy as np
|
| 5 |
import spaces
|
| 6 |
|
| 7 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 8 |
checkpoint = "google/owlv2-base-patch16-ensemble"
|
| 9 |
+
detector = pipeline(model=checkpoint, task="zero-shot-object-detection", device=device)
|
| 10 |
+
sam_model = SamModel.from_pretrained("jadechoghari/robustsam-vit-base").to(device)
|
| 11 |
sam_processor = SamProcessor.from_pretrained("jadechoghari/robustsam-vit-base")
|
| 12 |
|
| 13 |
|
|
|
|
| 23 |
result_labels = []
|
| 24 |
for pred in predictions:
|
| 25 |
|
| 26 |
+
|
| 27 |
score = pred["score"]
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
+
if score > 0.5:
|
| 30 |
+
box = pred["box"]
|
| 31 |
+
label = pred["label"]
|
| 32 |
+
box = [round(pred["box"]["xmin"], 2), round(pred["box"]["ymin"], 2),
|
| 33 |
+
round(pred["box"]["xmax"], 2), round(pred["box"]["ymax"], 2)]
|
| 34 |
|
| 35 |
+
inputs = sam_processor(
|
| 36 |
+
image,
|
| 37 |
+
input_boxes=[[[box]]],
|
| 38 |
+
return_tensors="pt"
|
| 39 |
+
).to(device)
|
| 40 |
|
| 41 |
+
with torch.no_grad():
|
| 42 |
+
outputs = sam_model(**inputs)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
|
| 44 |
+
mask = sam_processor.image_processor.post_process_masks(
|
| 45 |
+
outputs.pred_masks.cpu(),
|
| 46 |
+
inputs["original_sizes"].cpu(),
|
| 47 |
+
inputs["reshaped_input_sizes"].cpu()
|
| 48 |
+
)[0][0][0].numpy()
|
| 49 |
+
mask = mask[np.newaxis, ...]
|
| 50 |
+
result_labels.append((mask, label))
|
| 51 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
return image, result_labels
|
| 53 |
|
| 54 |
import gradio as gr
|
| 55 |
|
| 56 |
+
description = (
|
| 57 |
+
"Welcome to RobustSAM by Snap Research."
|
| 58 |
+
"This Space uses RobustSAM, an enhanced version of the Segment Anything Model (SAM) with improved performance on low-quality images while maintaining zero-shot segmentation capabilities. "
|
| 59 |
+
"Thanks to its integration with OWLv2, RobustSAM becomes text-promptable, allowing for flexible and accurate segmentation, even with degraded image quality. Try the example or input an image with comma-separated candidate labels to see the enhanced segmentation results."
|
| 60 |
+
)
|
| 61 |
+
|
| 62 |
demo = gr.Interface(
|
| 63 |
query,
|
| 64 |
inputs=[gr.Image(type="pil", label="Image Input"), gr.Textbox(label = "Candidate Labels"), gr.Slider(0, 1, value=0.05, label="Confidence Threshold")],
|
|
|
|
| 65 |
outputs=gr.AnnotatedImage(label="Segmented Image"),
|
| 66 |
+
title="RobustSAM",
|
| 67 |
description=description,
|
| 68 |
examples=[
|
| 69 |
+
["./blur.jpg", "insect", 0.1],
|
| 70 |
+
["./lowlight.jpg", "bus, window", 0.1],
|
| 71 |
+
["./rain.jpg", "tree, leafs", 0.1],
|
| 72 |
+
["./haze.jpg", "", 0.1],
|
| 73 |
],
|
| 74 |
cache_examples=True
|
| 75 |
)
|
| 76 |
+
demo.launch()
|