jamolo12 commited on
Commit
6fe6a92
·
verified ·
1 Parent(s): ae93382

Upload folder using huggingface_hub

Browse files
Files changed (3) hide show
  1. Dockerfile +8 -13
  2. app.py +40 -0
  3. requirements.txt +2 -3
Dockerfile CHANGED
@@ -1,21 +1,16 @@
 
1
  FROM python:3.9-slim
2
 
 
3
  WORKDIR /app
4
 
5
- RUN apt-get update && apt-get install -y \
6
- build-essential \
7
- curl \
8
- software-properties-common \
9
- git \
10
- && rm -rf /var/lib/apt/lists/*
11
-
12
- COPY requirements.txt ./
13
- COPY src/ ./src/
14
 
 
15
  RUN pip3 install -r requirements.txt
16
 
17
- EXPOSE 8501
18
-
19
- HEALTHCHECK CMD curl --fail http://localhost:8501/_stcore/health
20
 
21
- ENTRYPOINT ["streamlit", "run", "src/streamlit_app.py", "--server.port=8501", "--server.address=0.0.0.0"]
 
1
+ # Use a minimal base image with Python 3.9 installed
2
  FROM python:3.9-slim
3
 
4
+ # Set the working directory inside the container to /app
5
  WORKDIR /app
6
 
7
+ # Copy all files from the current directory on the host to the container's /app directory
8
+ COPY . .
 
 
 
 
 
 
 
9
 
10
+ # Install Python dependencies listed in requirements.txt
11
  RUN pip3 install -r requirements.txt
12
 
13
+ # Define the command to run the Streamlit app on port 8501 and make it accessible externally
14
+ CMD ["streamlit", "run", "app.py", "--server.port=8501", "--server.address=0.0.0.0", "--server.enableXsrfProtection=false"]
 
15
 
16
+ # NOTE: Disable XSRF protection for easier external access in order to make batch predictions
app.py ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import streamlit as st
3
+ import requests
4
+
5
+ st.title("SuperKart Sales Prediction App") #Complete the code to define the title of the app.
6
+
7
+ # Input fields for product and store data
8
+ Product_Weight = st.number_input("Product Weight", min_value=0.0, value=12.66)
9
+ Product_Sugar_Content = st.selectbox("Product Sugar Content", ["Low Sugar", "Regular", "No Sugar"])
10
+ Product_Allocated_Area = st.number_input("Product_Allocated_Area", min_value=0.0, value=10.0) #Complete the code to define the UI element for Product_Allocated_Area
11
+ Product_MRP = st.number_input("Product_MRP", min_value=0.0, value=10.0) #Complete the code to define the UI element for Product_MRP
12
+ Store_Size = st.number_input("Store_Size", min_value=0.0, value=10.0) #Complete the code to define the UI element for Store_Size
13
+ Store_Location_City_Type = st.selectbox("Store Location City Type", ["Tier 1", "Tier 2", "Tier 3"]) #Complete the code to define the UI element for Store_Location_City_Type
14
+ Store_Type = st.selectbox("Store Type", ["Departmental Store", "Food Mart", "Supermarket Type1", "Supermarket Type2"]) #Complete the code to define the UI element for Store_Type
15
+ Product_Id_char = st.number_input("Product_Id_char", min_value=0.0, value=10.0) #Complete the code to define the UI element for Product_Id_char
16
+ Store_Age_Years = st.number_input("Store_Age_Years", min_value=1, max_value=100,value=5) #Complete the code to define the UI element for Store_Age_Years
17
+ Product_Type_Category = st.selectbox("Product Type Category", ["Low Sugar", "Regular", "No Sugar"]) #Complete the code to define the UI element for Product_Type_Category
18
+
19
+ product_data = {
20
+ "Product_Weight": Product_Weight,
21
+ "Product_Sugar_Content": Product_Sugar_Content,
22
+ "Product_Allocated_Area": Product_Allocated_Area,
23
+ "Product_MRP": Product_MRP,
24
+ "Store_Size": Store_Size,
25
+ "Store_Location_City_Type": Store_Location_City_Type,
26
+ "Store_Type": Store_Type,
27
+ "Product_Id_char": Product_Id_char,
28
+ "Store_Age_Years": Store_Age_Years,
29
+ "Product_Type_Category": Product_Type_Category
30
+ }
31
+
32
+ if st.button("Predict", type='primary'):
33
+ #"https://<user_name>-<space_name>.hf.space/v1/customerbatch"
34
+ response = requests.post("https://jamolo12-SuperKart.hf.space/v1/predict", json=product_data) # Complete the code to enter user name and space name to correctly define the endpoint
35
+ if response.status_code == 200:
36
+ result = response.json()
37
+ predicted_sales = result["Sales"]
38
+ st.write(f"Predicted Product Store Sales Total: ₹{predicted_sales:.2f}")
39
+ else:
40
+ st.error("Error in API request")
requirements.txt CHANGED
@@ -1,3 +1,2 @@
1
- altair
2
- pandas
3
- streamlit
 
1
+ requests==2.32.3
2
+ streamlit==1.45.0