Spaces:
Sleeping
Sleeping
Upload folder using huggingface_hub
Browse files- Dockerfile +8 -13
- app.py +40 -0
- requirements.txt +2 -3
Dockerfile
CHANGED
@@ -1,21 +1,16 @@
|
|
|
|
1 |
FROM python:3.9-slim
|
2 |
|
|
|
3 |
WORKDIR /app
|
4 |
|
5 |
-
|
6 |
-
|
7 |
-
curl \
|
8 |
-
software-properties-common \
|
9 |
-
git \
|
10 |
-
&& rm -rf /var/lib/apt/lists/*
|
11 |
-
|
12 |
-
COPY requirements.txt ./
|
13 |
-
COPY src/ ./src/
|
14 |
|
|
|
15 |
RUN pip3 install -r requirements.txt
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
HEALTHCHECK CMD curl --fail http://localhost:8501/_stcore/health
|
20 |
|
21 |
-
|
|
|
1 |
+
# Use a minimal base image with Python 3.9 installed
|
2 |
FROM python:3.9-slim
|
3 |
|
4 |
+
# Set the working directory inside the container to /app
|
5 |
WORKDIR /app
|
6 |
|
7 |
+
# Copy all files from the current directory on the host to the container's /app directory
|
8 |
+
COPY . .
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
+
# Install Python dependencies listed in requirements.txt
|
11 |
RUN pip3 install -r requirements.txt
|
12 |
|
13 |
+
# Define the command to run the Streamlit app on port 8501 and make it accessible externally
|
14 |
+
CMD ["streamlit", "run", "app.py", "--server.port=8501", "--server.address=0.0.0.0", "--server.enableXsrfProtection=false"]
|
|
|
15 |
|
16 |
+
# NOTE: Disable XSRF protection for easier external access in order to make batch predictions
|
app.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import streamlit as st
|
3 |
+
import requests
|
4 |
+
|
5 |
+
st.title("SuperKart Sales Prediction App") #Complete the code to define the title of the app.
|
6 |
+
|
7 |
+
# Input fields for product and store data
|
8 |
+
Product_Weight = st.number_input("Product Weight", min_value=0.0, value=12.66)
|
9 |
+
Product_Sugar_Content = st.selectbox("Product Sugar Content", ["Low Sugar", "Regular", "No Sugar"])
|
10 |
+
Product_Allocated_Area = st.number_input("Product_Allocated_Area", min_value=0.0, value=10.0) #Complete the code to define the UI element for Product_Allocated_Area
|
11 |
+
Product_MRP = st.number_input("Product_MRP", min_value=0.0, value=10.0) #Complete the code to define the UI element for Product_MRP
|
12 |
+
Store_Size = st.number_input("Store_Size", min_value=0.0, value=10.0) #Complete the code to define the UI element for Store_Size
|
13 |
+
Store_Location_City_Type = st.selectbox("Store Location City Type", ["Tier 1", "Tier 2", "Tier 3"]) #Complete the code to define the UI element for Store_Location_City_Type
|
14 |
+
Store_Type = st.selectbox("Store Type", ["Departmental Store", "Food Mart", "Supermarket Type1", "Supermarket Type2"]) #Complete the code to define the UI element for Store_Type
|
15 |
+
Product_Id_char = st.number_input("Product_Id_char", min_value=0.0, value=10.0) #Complete the code to define the UI element for Product_Id_char
|
16 |
+
Store_Age_Years = st.number_input("Store_Age_Years", min_value=1, max_value=100,value=5) #Complete the code to define the UI element for Store_Age_Years
|
17 |
+
Product_Type_Category = st.selectbox("Product Type Category", ["Low Sugar", "Regular", "No Sugar"]) #Complete the code to define the UI element for Product_Type_Category
|
18 |
+
|
19 |
+
product_data = {
|
20 |
+
"Product_Weight": Product_Weight,
|
21 |
+
"Product_Sugar_Content": Product_Sugar_Content,
|
22 |
+
"Product_Allocated_Area": Product_Allocated_Area,
|
23 |
+
"Product_MRP": Product_MRP,
|
24 |
+
"Store_Size": Store_Size,
|
25 |
+
"Store_Location_City_Type": Store_Location_City_Type,
|
26 |
+
"Store_Type": Store_Type,
|
27 |
+
"Product_Id_char": Product_Id_char,
|
28 |
+
"Store_Age_Years": Store_Age_Years,
|
29 |
+
"Product_Type_Category": Product_Type_Category
|
30 |
+
}
|
31 |
+
|
32 |
+
if st.button("Predict", type='primary'):
|
33 |
+
#"https://<user_name>-<space_name>.hf.space/v1/customerbatch"
|
34 |
+
response = requests.post("https://jamolo12-SuperKart.hf.space/v1/predict", json=product_data) # Complete the code to enter user name and space name to correctly define the endpoint
|
35 |
+
if response.status_code == 200:
|
36 |
+
result = response.json()
|
37 |
+
predicted_sales = result["Sales"]
|
38 |
+
st.write(f"Predicted Product Store Sales Total: ₹{predicted_sales:.2f}")
|
39 |
+
else:
|
40 |
+
st.error("Error in API request")
|
requirements.txt
CHANGED
@@ -1,3 +1,2 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
streamlit
|
|
|
1 |
+
requests==2.32.3
|
2 |
+
streamlit==1.45.0
|
|