import streamlit as st import requests st.title("SuperKart Sales Prediction App") #Complete the code to define the title of the app. # Input fields for product and store data Product_Weight = st.number_input("Product Weight", min_value=0.0, value=12.66) Product_Sugar_Content = st.selectbox("Product Sugar Content", ["Low Sugar", "Regular", "No Sugar"]) Product_Allocated_Area = st.number_input("Product Allocated Area", min_value=0.0, value=10.0) #Complete the code to define the UI element for Product_Allocated_Area Product_MRP = st.number_input("Product MRP", min_value=0.0, value=10.0) #Complete the code to define the UI element for Product_MRP Store_Size = st.selectbox("Store Size", ["Small", "Medium", "High"]) #Complete the code to define the UI element for Store_Size Store_Location_City_Type = st.selectbox("Store Location City Type", ["Tier 1", "Tier 2", "Tier 3"]) #Complete the code to define the UI element for Store_Location_City_Type Store_Type = st.selectbox("Store Type", ["Departmental Store", "Food Mart", "Supermarket Type1", "Supermarket Type2"]) #Complete the code to define the UI element for Store_Type Product_Id_char = st.selectbox("Product Id char", ["FD", "NC", "DR"]) #Complete the code to define the UI element for Product_Id_char Store_Age_Years = st.number_input("Store Age Years", min_value=1, max_value=100,value=5) #Complete the code to define the UI element for Store_Age_Years Product_Type_Category = st.selectbox("Product Type Category", ["Low Sugar", "Regular", "No Sugar"]) #Complete the code to define the UI element for Product_Type_Category product_data = { "Product_Weight": Product_Weight, "Product_Sugar_Content": str(Product_Sugar_Content), "Product_Allocated_Area": Product_Allocated_Area, "Product_MRP": Product_MRP, "Store_Size": str(Store_Size), "Store_Location_City_Type": str(Store_Location_City_Type), "Store_Type": str(Store_Type), "Product_Id_char": str(Product_Id_char), "Store_Age_Years": Store_Age_Years, "Product_Type_Category": str(Product_Type_Category) } #if st.button("Predict", type='primary'): # response = requests.post("https://jamolo12-SuperKart.hf.space/v1/predict", json=product_data) # Complete the code to enter user name and space name to correctly define the endpoint # if response.status_code == 200: # result = response.json() # predicted_sales = result["Sales"] # st.write(f"Predicted Product Store Sales Total: ₹{predicted_sales:.2f}") # else: # st.error("Error in API request") if st.button("Predict", type='primary'): try: response = requests.post("https://jamolo12-SuperKart.hf.space/v1/predict", json=product_data) if response.status_code == 200: result = response.json() predicted_sales = result["Sales"] st.write(f"Predicted Product Store Sales Total: ₹{predicted_sales:.2f}") else: # Display a more detailed error message from the API st.error(f"Error in API request: Status Code {response.status_code}") try: # Try to show the JSON error response from the API error_details = response.json() st.error(f"Details: {error_details}") except ValueError: # If the error response is not in JSON format, show the raw text st.error(f"Details: {response.text}") except requests.exceptions.RequestException as e: # Handle network-level errors like connection issues st.error(f"A connection error occurred: {e}")