Spaces:
Runtime error
Runtime error
Upload folder using huggingface_hub
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .env +8 -0
- .github/PULL_REQUEST_TEMPLATE.md +30 -0
- .github/workflows/docker.yml +70 -0
- .github/workflows/genlocale.yml +33 -0
- .github/workflows/pull_format.yml +38 -0
- .github/workflows/push_format.yml +56 -0
- .github/workflows/unitest.yml +36 -0
- .gitignore +23 -0
- Dockerfile +29 -0
- GUI.py +1410 -0
- LICENSE +23 -0
- MIT协议暨相关引用库协议 +45 -0
- README.md +34 -8
- Retrieval_based_Voice_Conversion_WebUI.ipynb +403 -0
- Retrieval_based_Voice_Conversion_WebUI_v2.ipynb +422 -0
- a.png +0 -0
- app.py +1441 -0
- assets/hubert/.gitignore +2 -0
- assets/hubert/hubert_base.pt +3 -0
- assets/pretrained/.gitignore +2 -0
- assets/pretrained_v2/.gitignore +2 -0
- assets/pretrained_v2/D40k.pth +3 -0
- assets/pretrained_v2/G40k.pth +3 -0
- assets/pretrained_v2/f0D40k.pth +3 -0
- assets/pretrained_v2/f0G40k.pth +3 -0
- assets/rmvpe/.gitignore +2 -0
- assets/rmvpe/rmvpe.pt +3 -0
- assets/uvr5_weights/.gitignore +2 -0
- assets/weights/.gitignore +2 -0
- assets/weights/MJV2.pth +3 -0
- assets/weights/MJV2_e100_s100.pth +3 -0
- assets/weights/MJV2_e120_s120.pth +3 -0
- assets/weights/MJV2_e140_s140.pth +3 -0
- assets/weights/MJV2_e160_s160.pth +3 -0
- assets/weights/MJV2_e180_s180.pth +3 -0
- assets/weights/MJV2_e200_s200.pth +3 -0
- assets/weights/MJV2_e20_s20.pth +3 -0
- assets/weights/MJV2_e220_s220.pth +3 -0
- assets/weights/MJV2_e240_s240.pth +3 -0
- assets/weights/MJV2_e260_s260.pth +3 -0
- assets/weights/MJV2_e280_s280.pth +3 -0
- assets/weights/MJV2_e300_s300.pth +3 -0
- assets/weights/MJV2_e40_s40.pth +3 -0
- assets/weights/MJV2_e60_s60.pth +3 -0
- assets/weights/MJV2_e80_s80.pth +3 -0
- audios/somegirl.mp3 +0 -0
- audios/someguy.mp3 +0 -0
- audios/unachica.mp3 +0 -0
- audios/unchico.mp3 +0 -0
- configs/__pycache__/config.cpython-310.pyc +0 -0
.env
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
OPENBLAS_NUM_THREADS = 1
|
| 2 |
+
no_proxy = localhost, 127.0.0.1, ::1
|
| 3 |
+
|
| 4 |
+
# You can change the location of the model, etc. by changing here
|
| 5 |
+
weight_root = assets/weights
|
| 6 |
+
weight_uvr5_root = assets/uvr5_weights
|
| 7 |
+
index_root = logs
|
| 8 |
+
rmvpe_root = assets/rmvpe
|
.github/PULL_REQUEST_TEMPLATE.md
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Pull request checklist
|
| 2 |
+
|
| 3 |
+
- [ ] The PR has a proper title. Use [Semantic Commit Messages](https://seesparkbox.com/foundry/semantic_commit_messages). (No more branch-name title please)
|
| 4 |
+
- [ ] Make sure you are requesting the right branch.
|
| 5 |
+
- [ ] Make sure this is ready to be merged into the relevant branch. Please don't create a PR and let it hang for a few days.
|
| 6 |
+
- [ ] Ensure all tests are passing.
|
| 7 |
+
- [ ] Ensure linting is passing.
|
| 8 |
+
|
| 9 |
+
# PR type
|
| 10 |
+
|
| 11 |
+
- Bug fix / new feature / chore
|
| 12 |
+
|
| 13 |
+
# Description
|
| 14 |
+
|
| 15 |
+
- Describe what this pull request is for.
|
| 16 |
+
- What will it affect.
|
| 17 |
+
|
| 18 |
+
# Screenshot
|
| 19 |
+
|
| 20 |
+
- Please include a screenshot if applicable
|
| 21 |
+
|
| 22 |
+
# Localhost url to test on
|
| 23 |
+
|
| 24 |
+
- Please include a url on localhost to test.
|
| 25 |
+
|
| 26 |
+
# Jira Link
|
| 27 |
+
|
| 28 |
+
- Please include a link to the ticket if applicable.
|
| 29 |
+
|
| 30 |
+
[Ticket]()
|
.github/workflows/docker.yml
ADDED
|
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
name: Build And Push Docker Image
|
| 2 |
+
|
| 3 |
+
on:
|
| 4 |
+
workflow_dispatch:
|
| 5 |
+
push:
|
| 6 |
+
# Sequence of patterns matched against refs/tags
|
| 7 |
+
tags:
|
| 8 |
+
- 'v*' # Push events to matching v*, i.e. v1.0, v20.15.10
|
| 9 |
+
|
| 10 |
+
jobs:
|
| 11 |
+
build:
|
| 12 |
+
runs-on: ubuntu-latest
|
| 13 |
+
permissions:
|
| 14 |
+
packages: write
|
| 15 |
+
contents: read
|
| 16 |
+
steps:
|
| 17 |
+
- uses: actions/checkout@v3
|
| 18 |
+
- name: Set time zone
|
| 19 |
+
uses: szenius/[email protected]
|
| 20 |
+
with:
|
| 21 |
+
timezoneLinux: "Asia/Shanghai"
|
| 22 |
+
timezoneMacos: "Asia/Shanghai"
|
| 23 |
+
timezoneWindows: "China Standard Time"
|
| 24 |
+
|
| 25 |
+
# # 如果有 dockerhub 账户,可以在github的secrets中配置下面两个,然后取消下面注释的这几行,并在meta步骤的images增加一行 ${{ github.repository }}
|
| 26 |
+
# - name: Login to DockerHub
|
| 27 |
+
# uses: docker/login-action@v1
|
| 28 |
+
# with:
|
| 29 |
+
# username: ${{ secrets.DOCKERHUB_USERNAME }}
|
| 30 |
+
# password: ${{ secrets.DOCKERHUB_TOKEN }}
|
| 31 |
+
|
| 32 |
+
- name: Login to GHCR
|
| 33 |
+
uses: docker/login-action@v2
|
| 34 |
+
with:
|
| 35 |
+
registry: ghcr.io
|
| 36 |
+
username: ${{ github.repository_owner }}
|
| 37 |
+
password: ${{ secrets.GITHUB_TOKEN }}
|
| 38 |
+
|
| 39 |
+
- name: Extract metadata (tags, labels) for Docker
|
| 40 |
+
id: meta
|
| 41 |
+
uses: docker/metadata-action@v4
|
| 42 |
+
with:
|
| 43 |
+
images: |
|
| 44 |
+
ghcr.io/${{ github.repository }}
|
| 45 |
+
# generate Docker tags based on the following events/attributes
|
| 46 |
+
# nightly, master, pr-2, 1.2.3, 1.2, 1
|
| 47 |
+
tags: |
|
| 48 |
+
type=schedule,pattern=nightly
|
| 49 |
+
type=edge
|
| 50 |
+
type=ref,event=branch
|
| 51 |
+
type=ref,event=pr
|
| 52 |
+
type=semver,pattern={{version}}
|
| 53 |
+
type=semver,pattern={{major}}.{{minor}}
|
| 54 |
+
type=semver,pattern={{major}}
|
| 55 |
+
|
| 56 |
+
- name: Set up QEMU
|
| 57 |
+
uses: docker/setup-qemu-action@v2
|
| 58 |
+
|
| 59 |
+
- name: Set up Docker Buildx
|
| 60 |
+
uses: docker/setup-buildx-action@v2
|
| 61 |
+
|
| 62 |
+
- name: Build and push
|
| 63 |
+
id: docker_build
|
| 64 |
+
uses: docker/build-push-action@v4
|
| 65 |
+
with:
|
| 66 |
+
context: .
|
| 67 |
+
platforms: linux/amd64,linux/arm64
|
| 68 |
+
push: true
|
| 69 |
+
tags: ${{ steps.meta.outputs.tags }}
|
| 70 |
+
labels: ${{ steps.meta.outputs.labels }}
|
.github/workflows/genlocale.yml
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
name: genlocale
|
| 2 |
+
on:
|
| 3 |
+
push:
|
| 4 |
+
branches:
|
| 5 |
+
- main
|
| 6 |
+
jobs:
|
| 7 |
+
genlocale:
|
| 8 |
+
name: genlocale
|
| 9 |
+
runs-on: ubuntu-latest
|
| 10 |
+
steps:
|
| 11 |
+
- name: Check out
|
| 12 |
+
uses: actions/checkout@master
|
| 13 |
+
|
| 14 |
+
- name: Run locale generation
|
| 15 |
+
run: |
|
| 16 |
+
python3 i18n/scan_i18n.py
|
| 17 |
+
cd i18n
|
| 18 |
+
python3 locale_diff.py
|
| 19 |
+
|
| 20 |
+
- name: Commit back
|
| 21 |
+
if: ${{ !github.head_ref }}
|
| 22 |
+
continue-on-error: true
|
| 23 |
+
run: |
|
| 24 |
+
git config --local user.name 'github-actions[bot]'
|
| 25 |
+
git config --local user.email 'github-actions[bot]@users.noreply.github.com'
|
| 26 |
+
git add --all
|
| 27 |
+
git commit -m "🎨 同步 locale"
|
| 28 |
+
|
| 29 |
+
- name: Create Pull Request
|
| 30 |
+
if: ${{ !github.head_ref }}
|
| 31 |
+
continue-on-error: true
|
| 32 |
+
uses: peter-evans/create-pull-request@v4
|
| 33 |
+
|
.github/workflows/pull_format.yml
ADDED
|
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
name: pull format
|
| 2 |
+
|
| 3 |
+
on: [pull_request]
|
| 4 |
+
|
| 5 |
+
permissions:
|
| 6 |
+
contents: write
|
| 7 |
+
|
| 8 |
+
jobs:
|
| 9 |
+
pull_format:
|
| 10 |
+
runs-on: ${{ matrix.os }}
|
| 11 |
+
|
| 12 |
+
strategy:
|
| 13 |
+
matrix:
|
| 14 |
+
python-version: ["3.10"]
|
| 15 |
+
os: [ubuntu-latest]
|
| 16 |
+
fail-fast: false
|
| 17 |
+
|
| 18 |
+
continue-on-error: true
|
| 19 |
+
|
| 20 |
+
steps:
|
| 21 |
+
- name: checkout
|
| 22 |
+
continue-on-error: true
|
| 23 |
+
uses: actions/checkout@v3
|
| 24 |
+
with:
|
| 25 |
+
ref: ${{ github.head_ref }}
|
| 26 |
+
fetch-depth: 0
|
| 27 |
+
|
| 28 |
+
- name: Set up Python ${{ matrix.python-version }}
|
| 29 |
+
uses: actions/setup-python@v4
|
| 30 |
+
with:
|
| 31 |
+
python-version: ${{ matrix.python-version }}
|
| 32 |
+
|
| 33 |
+
- name: Install Black
|
| 34 |
+
run: pip install "black[jupyter]"
|
| 35 |
+
|
| 36 |
+
- name: Run Black
|
| 37 |
+
# run: black $(git ls-files '*.py')
|
| 38 |
+
run: black .
|
.github/workflows/push_format.yml
ADDED
|
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
name: push format
|
| 2 |
+
|
| 3 |
+
on:
|
| 4 |
+
push:
|
| 5 |
+
branches:
|
| 6 |
+
- main
|
| 7 |
+
|
| 8 |
+
permissions:
|
| 9 |
+
contents: write
|
| 10 |
+
pull-requests: write
|
| 11 |
+
|
| 12 |
+
jobs:
|
| 13 |
+
push_format:
|
| 14 |
+
runs-on: ${{ matrix.os }}
|
| 15 |
+
|
| 16 |
+
strategy:
|
| 17 |
+
matrix:
|
| 18 |
+
python-version: ["3.10"]
|
| 19 |
+
os: [ubuntu-latest]
|
| 20 |
+
fail-fast: false
|
| 21 |
+
|
| 22 |
+
steps:
|
| 23 |
+
- uses: actions/checkout@v3
|
| 24 |
+
with:
|
| 25 |
+
ref: ${{github.ref_name}}
|
| 26 |
+
|
| 27 |
+
- name: Set up Python ${{ matrix.python-version }}
|
| 28 |
+
uses: actions/setup-python@v4
|
| 29 |
+
with:
|
| 30 |
+
python-version: ${{ matrix.python-version }}
|
| 31 |
+
|
| 32 |
+
- name: Install Black
|
| 33 |
+
run: pip install "black[jupyter]"
|
| 34 |
+
|
| 35 |
+
- name: Run Black
|
| 36 |
+
# run: black $(git ls-files '*.py')
|
| 37 |
+
run: black .
|
| 38 |
+
|
| 39 |
+
- name: Commit Back
|
| 40 |
+
continue-on-error: true
|
| 41 |
+
id: commitback
|
| 42 |
+
run: |
|
| 43 |
+
git config --local user.email "github-actions[bot]@users.noreply.github.com"
|
| 44 |
+
git config --local user.name "github-actions[bot]"
|
| 45 |
+
git add --all
|
| 46 |
+
git commit -m "Format code"
|
| 47 |
+
|
| 48 |
+
- name: Create Pull Request
|
| 49 |
+
if: steps.commitback.outcome == 'success'
|
| 50 |
+
continue-on-error: true
|
| 51 |
+
uses: peter-evans/create-pull-request@v5
|
| 52 |
+
with:
|
| 53 |
+
delete-branch: true
|
| 54 |
+
body: Apply Code Formatter Change
|
| 55 |
+
title: Apply Code Formatter Change
|
| 56 |
+
commit-message: Automatic code format
|
.github/workflows/unitest.yml
ADDED
|
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
name: unitest
|
| 2 |
+
on: [ push, pull_request ]
|
| 3 |
+
jobs:
|
| 4 |
+
build:
|
| 5 |
+
runs-on: ${{ matrix.os }}
|
| 6 |
+
strategy:
|
| 7 |
+
matrix:
|
| 8 |
+
python-version: ["3.8", "3.9", "3.10"]
|
| 9 |
+
os: [ubuntu-latest]
|
| 10 |
+
fail-fast: false
|
| 11 |
+
|
| 12 |
+
steps:
|
| 13 |
+
- uses: actions/checkout@master
|
| 14 |
+
- name: Set up Python ${{ matrix.python-version }}
|
| 15 |
+
uses: actions/setup-python@v4
|
| 16 |
+
with:
|
| 17 |
+
python-version: ${{ matrix.python-version }}
|
| 18 |
+
- name: Install dependencies
|
| 19 |
+
run: |
|
| 20 |
+
sudo apt update
|
| 21 |
+
sudo apt -y install ffmpeg
|
| 22 |
+
sudo apt -y install -qq aria2
|
| 23 |
+
aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/hubert_base.pt -d ./ -o hubert_base.pt
|
| 24 |
+
python -m pip install --upgrade pip
|
| 25 |
+
python -m pip install --upgrade setuptools
|
| 26 |
+
python -m pip install --upgrade wheel
|
| 27 |
+
pip install torch torchvision torchaudio
|
| 28 |
+
pip install -r requirements.txt
|
| 29 |
+
- name: Test step 1 & 2
|
| 30 |
+
run: |
|
| 31 |
+
mkdir -p logs/mi-test
|
| 32 |
+
touch logs/mi-test/preprocess.log
|
| 33 |
+
python infer/modules/train/preprocess.py logs/mute/0_gt_wavs 48000 8 logs/mi-test True 3.7
|
| 34 |
+
touch logs/mi-test/extract_f0_feature.log
|
| 35 |
+
python infer/modules/train/extract/extract_f0_print.py logs/mi-test $(nproc) pm
|
| 36 |
+
python infer/modules/train/extract_feature_print.py cpu 1 0 0 logs/mi-test v1
|
.gitignore
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
.DS_Store
|
| 2 |
+
__pycache__
|
| 3 |
+
/TEMP
|
| 4 |
+
*.pyd
|
| 5 |
+
.venv
|
| 6 |
+
/opt
|
| 7 |
+
tools/aria2c/
|
| 8 |
+
tools/flag.txt
|
| 9 |
+
|
| 10 |
+
# Imported from huggingface.co/lj1995/VoiceConversionWebUI
|
| 11 |
+
/pretrained
|
| 12 |
+
/pretrained_v2
|
| 13 |
+
/uvr5_weights
|
| 14 |
+
hubert_base.pt
|
| 15 |
+
rmvpe.onnx
|
| 16 |
+
rmvpe.pt
|
| 17 |
+
|
| 18 |
+
# Generated by RVC
|
| 19 |
+
/logs
|
| 20 |
+
/weights
|
| 21 |
+
|
| 22 |
+
# To set a Python version for the project
|
| 23 |
+
.tool-versions
|
Dockerfile
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# syntax=docker/dockerfile:1
|
| 2 |
+
|
| 3 |
+
FROM python:3.10-bullseye
|
| 4 |
+
|
| 5 |
+
EXPOSE 7865
|
| 6 |
+
|
| 7 |
+
WORKDIR /app
|
| 8 |
+
|
| 9 |
+
COPY . .
|
| 10 |
+
|
| 11 |
+
RUN apt update && apt install -y -qq ffmpeg aria2 && apt clean
|
| 12 |
+
|
| 13 |
+
RUN pip3 install --no-cache-dir -r requirements.txt
|
| 14 |
+
|
| 15 |
+
RUN aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained_v2/D40k.pth -d assets/pretrained_v2/ -o D40k.pth
|
| 16 |
+
RUN aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained_v2/G40k.pth -d assets/pretrained_v2/ -o G40k.pth
|
| 17 |
+
RUN aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained_v2/f0D40k.pth -d assets/pretrained_v2/ -o f0D40k.pth
|
| 18 |
+
RUN aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained_v2/f0G40k.pth -d assets/pretrained_v2/ -o f0G40k.pth
|
| 19 |
+
|
| 20 |
+
RUN aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/uvr5_weights/HP2-人声vocals+非人声instrumentals.pth -d assets/uvr5_weights/ -o HP2-人声vocals+非人声instrumentals.pth
|
| 21 |
+
RUN aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/uvr5_weights/HP5-主旋律人声vocals+其他instrumentals.pth -d assets/uvr5_weights/ -o HP5-主旋律人声vocals+其他instrumentals.pth
|
| 22 |
+
|
| 23 |
+
RUN aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/hubert_base.pt -d assets/hubert -o hubert_base.pt
|
| 24 |
+
|
| 25 |
+
RUN aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/rmvpe.pt -d assets/hubert -o rmvpe.pt
|
| 26 |
+
|
| 27 |
+
VOLUME [ "/app/weights", "/app/opt" ]
|
| 28 |
+
|
| 29 |
+
CMD ["python3", "infer-web.py"]
|
GUI.py
ADDED
|
@@ -0,0 +1,1410 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os, sys
|
| 2 |
+
import datetime, subprocess
|
| 3 |
+
from mega import Mega
|
| 4 |
+
now_dir = os.getcwd()
|
| 5 |
+
sys.path.append(now_dir)
|
| 6 |
+
import logging
|
| 7 |
+
import shutil
|
| 8 |
+
import threading
|
| 9 |
+
import traceback
|
| 10 |
+
import warnings
|
| 11 |
+
from random import shuffle
|
| 12 |
+
from subprocess import Popen
|
| 13 |
+
from time import sleep
|
| 14 |
+
import json
|
| 15 |
+
import pathlib
|
| 16 |
+
|
| 17 |
+
import fairseq
|
| 18 |
+
import faiss
|
| 19 |
+
import gradio as gr
|
| 20 |
+
import numpy as np
|
| 21 |
+
import torch
|
| 22 |
+
from dotenv import load_dotenv
|
| 23 |
+
from sklearn.cluster import MiniBatchKMeans
|
| 24 |
+
|
| 25 |
+
from configs.config import Config
|
| 26 |
+
from i18n.i18n import I18nAuto
|
| 27 |
+
from infer.lib.train.process_ckpt import (
|
| 28 |
+
change_info,
|
| 29 |
+
extract_small_model,
|
| 30 |
+
merge,
|
| 31 |
+
show_info,
|
| 32 |
+
)
|
| 33 |
+
from infer.modules.uvr5.modules import uvr
|
| 34 |
+
from infer.modules.vc.modules import VC
|
| 35 |
+
logging.getLogger("numba").setLevel(logging.WARNING)
|
| 36 |
+
|
| 37 |
+
logger = logging.getLogger(__name__)
|
| 38 |
+
|
| 39 |
+
tmp = os.path.join(now_dir, "TEMP")
|
| 40 |
+
shutil.rmtree(tmp, ignore_errors=True)
|
| 41 |
+
shutil.rmtree("%s/runtime/Lib/site-packages/infer_pack" % (now_dir), ignore_errors=True)
|
| 42 |
+
shutil.rmtree("%s/runtime/Lib/site-packages/uvr5_pack" % (now_dir), ignore_errors=True)
|
| 43 |
+
os.makedirs(tmp, exist_ok=True)
|
| 44 |
+
os.makedirs(os.path.join(now_dir, "logs"), exist_ok=True)
|
| 45 |
+
os.makedirs(os.path.join(now_dir, "assets/weights"), exist_ok=True)
|
| 46 |
+
os.environ["TEMP"] = tmp
|
| 47 |
+
warnings.filterwarnings("ignore")
|
| 48 |
+
torch.manual_seed(114514)
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
load_dotenv()
|
| 52 |
+
config = Config()
|
| 53 |
+
vc = VC(config)
|
| 54 |
+
|
| 55 |
+
if config.dml == True:
|
| 56 |
+
|
| 57 |
+
def forward_dml(ctx, x, scale):
|
| 58 |
+
ctx.scale = scale
|
| 59 |
+
res = x.clone().detach()
|
| 60 |
+
return res
|
| 61 |
+
|
| 62 |
+
fairseq.modules.grad_multiply.GradMultiply.forward = forward_dml
|
| 63 |
+
i18n = I18nAuto()
|
| 64 |
+
logger.info(i18n)
|
| 65 |
+
# 判断是否有能用来训练和加速推理的N卡
|
| 66 |
+
ngpu = torch.cuda.device_count()
|
| 67 |
+
gpu_infos = []
|
| 68 |
+
mem = []
|
| 69 |
+
if_gpu_ok = False
|
| 70 |
+
|
| 71 |
+
if torch.cuda.is_available() or ngpu != 0:
|
| 72 |
+
for i in range(ngpu):
|
| 73 |
+
gpu_name = torch.cuda.get_device_name(i)
|
| 74 |
+
if any(
|
| 75 |
+
value in gpu_name.upper()
|
| 76 |
+
for value in [
|
| 77 |
+
"10",
|
| 78 |
+
"16",
|
| 79 |
+
"20",
|
| 80 |
+
"30",
|
| 81 |
+
"40",
|
| 82 |
+
"A2",
|
| 83 |
+
"A3",
|
| 84 |
+
"A4",
|
| 85 |
+
"P4",
|
| 86 |
+
"A50",
|
| 87 |
+
"500",
|
| 88 |
+
"A60",
|
| 89 |
+
"70",
|
| 90 |
+
"80",
|
| 91 |
+
"90",
|
| 92 |
+
"M4",
|
| 93 |
+
"T4",
|
| 94 |
+
"TITAN",
|
| 95 |
+
]
|
| 96 |
+
):
|
| 97 |
+
# A10#A100#V100#A40#P40#M40#K80#A4500
|
| 98 |
+
if_gpu_ok = True # 至少有一张能用的N卡
|
| 99 |
+
gpu_infos.append("%s\t%s" % (i, gpu_name))
|
| 100 |
+
mem.append(
|
| 101 |
+
int(
|
| 102 |
+
torch.cuda.get_device_properties(i).total_memory
|
| 103 |
+
/ 1024
|
| 104 |
+
/ 1024
|
| 105 |
+
/ 1024
|
| 106 |
+
+ 0.4
|
| 107 |
+
)
|
| 108 |
+
)
|
| 109 |
+
if if_gpu_ok and len(gpu_infos) > 0:
|
| 110 |
+
gpu_info = "\n".join(gpu_infos)
|
| 111 |
+
default_batch_size = min(mem) // 2
|
| 112 |
+
else:
|
| 113 |
+
gpu_info = i18n("很遗憾您这没有能用的显卡来支持您训练")
|
| 114 |
+
default_batch_size = 1
|
| 115 |
+
gpus = "-".join([i[0] for i in gpu_infos])
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
class ToolButton(gr.Button, gr.components.FormComponent):
|
| 119 |
+
"""Small button with single emoji as text, fits inside gradio forms"""
|
| 120 |
+
|
| 121 |
+
def __init__(self, **kwargs):
|
| 122 |
+
super().__init__(variant="tool", **kwargs)
|
| 123 |
+
|
| 124 |
+
def get_block_name(self):
|
| 125 |
+
return "button"
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
weight_root = os.getenv("weight_root")
|
| 129 |
+
weight_uvr5_root = os.getenv("weight_uvr5_root")
|
| 130 |
+
index_root = os.getenv("index_root")
|
| 131 |
+
|
| 132 |
+
names = []
|
| 133 |
+
for name in os.listdir(weight_root):
|
| 134 |
+
if name.endswith(".pth"):
|
| 135 |
+
names.append(name)
|
| 136 |
+
index_paths = []
|
| 137 |
+
for root, dirs, files in os.walk(index_root, topdown=False):
|
| 138 |
+
for name in files:
|
| 139 |
+
if name.endswith(".index") and "trained" not in name:
|
| 140 |
+
index_paths.append("%s/%s" % (root, name))
|
| 141 |
+
uvr5_names = []
|
| 142 |
+
for name in os.listdir(weight_uvr5_root):
|
| 143 |
+
if name.endswith(".pth") or "onnx" in name:
|
| 144 |
+
uvr5_names.append(name.replace(".pth", ""))
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
def change_choices():
|
| 148 |
+
names = []
|
| 149 |
+
for name in os.listdir(weight_root):
|
| 150 |
+
if name.endswith(".pth"):
|
| 151 |
+
names.append(name)
|
| 152 |
+
index_paths = []
|
| 153 |
+
for root, dirs, files in os.walk(index_root, topdown=False):
|
| 154 |
+
for name in files:
|
| 155 |
+
if name.endswith(".index") and "trained" not in name:
|
| 156 |
+
index_paths.append("%s/%s" % (root, name))
|
| 157 |
+
audio_files=[]
|
| 158 |
+
for filename in os.listdir("./audios"):
|
| 159 |
+
if filename.endswith(('.wav','.mp3','.ogg')):
|
| 160 |
+
audio_files.append('./audios/'+filename)
|
| 161 |
+
return {"choices": sorted(names), "__type__": "update"}, {
|
| 162 |
+
"choices": sorted(index_paths),
|
| 163 |
+
"__type__": "update",
|
| 164 |
+
}, {"choices": sorted(audio_files), "__type__": "update"}
|
| 165 |
+
|
| 166 |
+
def clean():
|
| 167 |
+
return {"value": "", "__type__": "update"}
|
| 168 |
+
|
| 169 |
+
|
| 170 |
+
def export_onnx():
|
| 171 |
+
from infer.modules.onnx.export import export_onnx as eo
|
| 172 |
+
|
| 173 |
+
eo()
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
sr_dict = {
|
| 177 |
+
"32k": 32000,
|
| 178 |
+
"40k": 40000,
|
| 179 |
+
"48k": 48000,
|
| 180 |
+
}
|
| 181 |
+
|
| 182 |
+
|
| 183 |
+
def if_done(done, p):
|
| 184 |
+
while 1:
|
| 185 |
+
if p.poll() is None:
|
| 186 |
+
sleep(0.5)
|
| 187 |
+
else:
|
| 188 |
+
break
|
| 189 |
+
done[0] = True
|
| 190 |
+
|
| 191 |
+
|
| 192 |
+
def if_done_multi(done, ps):
|
| 193 |
+
while 1:
|
| 194 |
+
# poll==None代表进程未结束
|
| 195 |
+
# 只要有一个进程未结束都不停
|
| 196 |
+
flag = 1
|
| 197 |
+
for p in ps:
|
| 198 |
+
if p.poll() is None:
|
| 199 |
+
flag = 0
|
| 200 |
+
sleep(0.5)
|
| 201 |
+
break
|
| 202 |
+
if flag == 1:
|
| 203 |
+
break
|
| 204 |
+
done[0] = True
|
| 205 |
+
|
| 206 |
+
|
| 207 |
+
def preprocess_dataset(trainset_dir, exp_dir, sr, n_p):
|
| 208 |
+
sr = sr_dict[sr]
|
| 209 |
+
os.makedirs("%s/logs/%s" % (now_dir, exp_dir), exist_ok=True)
|
| 210 |
+
f = open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "w")
|
| 211 |
+
f.close()
|
| 212 |
+
per = 3.0 if config.is_half else 3.7
|
| 213 |
+
cmd = '"%s" infer/modules/train/preprocess.py "%s" %s %s "%s/logs/%s" %s %.1f' % (
|
| 214 |
+
config.python_cmd,
|
| 215 |
+
trainset_dir,
|
| 216 |
+
sr,
|
| 217 |
+
n_p,
|
| 218 |
+
now_dir,
|
| 219 |
+
exp_dir,
|
| 220 |
+
config.noparallel,
|
| 221 |
+
per,
|
| 222 |
+
)
|
| 223 |
+
logger.info(cmd)
|
| 224 |
+
p = Popen(cmd, shell=True) # , stdin=PIPE, stdout=PIPE,stderr=PIPE,cwd=now_dir
|
| 225 |
+
###煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
|
| 226 |
+
done = [False]
|
| 227 |
+
threading.Thread(
|
| 228 |
+
target=if_done,
|
| 229 |
+
args=(
|
| 230 |
+
done,
|
| 231 |
+
p,
|
| 232 |
+
),
|
| 233 |
+
).start()
|
| 234 |
+
while 1:
|
| 235 |
+
with open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "r") as f:
|
| 236 |
+
yield (f.read())
|
| 237 |
+
sleep(1)
|
| 238 |
+
if done[0]:
|
| 239 |
+
break
|
| 240 |
+
with open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "r") as f:
|
| 241 |
+
log = f.read()
|
| 242 |
+
logger.info(log)
|
| 243 |
+
yield log
|
| 244 |
+
|
| 245 |
+
|
| 246 |
+
# but2.click(extract_f0,[gpus6,np7,f0method8,if_f0_3,trainset_dir4],[info2])
|
| 247 |
+
def extract_f0_feature(gpus, n_p, f0method, if_f0, exp_dir, version19, gpus_rmvpe):
|
| 248 |
+
gpus = gpus.split("-")
|
| 249 |
+
os.makedirs("%s/logs/%s" % (now_dir, exp_dir), exist_ok=True)
|
| 250 |
+
f = open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "w")
|
| 251 |
+
f.close()
|
| 252 |
+
if if_f0:
|
| 253 |
+
if f0method != "rmvpe_gpu":
|
| 254 |
+
cmd = (
|
| 255 |
+
'"%s" infer/modules/train/extract/extract_f0_print.py "%s/logs/%s" %s %s'
|
| 256 |
+
% (
|
| 257 |
+
config.python_cmd,
|
| 258 |
+
now_dir,
|
| 259 |
+
exp_dir,
|
| 260 |
+
n_p,
|
| 261 |
+
f0method,
|
| 262 |
+
)
|
| 263 |
+
)
|
| 264 |
+
logger.info(cmd)
|
| 265 |
+
p = Popen(
|
| 266 |
+
cmd, shell=True, cwd=now_dir
|
| 267 |
+
) # , stdin=PIPE, stdout=PIPE,stderr=PIPE
|
| 268 |
+
###煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
|
| 269 |
+
done = [False]
|
| 270 |
+
threading.Thread(
|
| 271 |
+
target=if_done,
|
| 272 |
+
args=(
|
| 273 |
+
done,
|
| 274 |
+
p,
|
| 275 |
+
),
|
| 276 |
+
).start()
|
| 277 |
+
else:
|
| 278 |
+
if gpus_rmvpe != "-":
|
| 279 |
+
gpus_rmvpe = gpus_rmvpe.split("-")
|
| 280 |
+
leng = len(gpus_rmvpe)
|
| 281 |
+
ps = []
|
| 282 |
+
for idx, n_g in enumerate(gpus_rmvpe):
|
| 283 |
+
cmd = (
|
| 284 |
+
'"%s" infer/modules/train/extract/extract_f0_rmvpe.py %s %s %s "%s/logs/%s" %s '
|
| 285 |
+
% (
|
| 286 |
+
config.python_cmd,
|
| 287 |
+
leng,
|
| 288 |
+
idx,
|
| 289 |
+
n_g,
|
| 290 |
+
now_dir,
|
| 291 |
+
exp_dir,
|
| 292 |
+
config.is_half,
|
| 293 |
+
)
|
| 294 |
+
)
|
| 295 |
+
logger.info(cmd)
|
| 296 |
+
p = Popen(
|
| 297 |
+
cmd, shell=True, cwd=now_dir
|
| 298 |
+
) # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir
|
| 299 |
+
ps.append(p)
|
| 300 |
+
###煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
|
| 301 |
+
done = [False]
|
| 302 |
+
threading.Thread(
|
| 303 |
+
target=if_done_multi, #
|
| 304 |
+
args=(
|
| 305 |
+
done,
|
| 306 |
+
ps,
|
| 307 |
+
),
|
| 308 |
+
).start()
|
| 309 |
+
else:
|
| 310 |
+
cmd = (
|
| 311 |
+
config.python_cmd
|
| 312 |
+
+ ' infer/modules/train/extract/extract_f0_rmvpe_dml.py "%s/logs/%s" '
|
| 313 |
+
% (
|
| 314 |
+
now_dir,
|
| 315 |
+
exp_dir,
|
| 316 |
+
)
|
| 317 |
+
)
|
| 318 |
+
logger.info(cmd)
|
| 319 |
+
p = Popen(
|
| 320 |
+
cmd, shell=True, cwd=now_dir
|
| 321 |
+
) # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir
|
| 322 |
+
p.wait()
|
| 323 |
+
done = [True]
|
| 324 |
+
while 1:
|
| 325 |
+
with open(
|
| 326 |
+
"%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r"
|
| 327 |
+
) as f:
|
| 328 |
+
yield (f.read())
|
| 329 |
+
sleep(1)
|
| 330 |
+
if done[0]:
|
| 331 |
+
break
|
| 332 |
+
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f:
|
| 333 |
+
log = f.read()
|
| 334 |
+
logger.info(log)
|
| 335 |
+
yield log
|
| 336 |
+
####对不同part分别开多进程
|
| 337 |
+
"""
|
| 338 |
+
n_part=int(sys.argv[1])
|
| 339 |
+
i_part=int(sys.argv[2])
|
| 340 |
+
i_gpu=sys.argv[3]
|
| 341 |
+
exp_dir=sys.argv[4]
|
| 342 |
+
os.environ["CUDA_VISIBLE_DEVICES"]=str(i_gpu)
|
| 343 |
+
"""
|
| 344 |
+
leng = len(gpus)
|
| 345 |
+
ps = []
|
| 346 |
+
for idx, n_g in enumerate(gpus):
|
| 347 |
+
cmd = (
|
| 348 |
+
'"%s" infer/modules/train/extract_feature_print.py %s %s %s %s "%s/logs/%s" %s'
|
| 349 |
+
% (
|
| 350 |
+
config.python_cmd,
|
| 351 |
+
config.device,
|
| 352 |
+
leng,
|
| 353 |
+
idx,
|
| 354 |
+
n_g,
|
| 355 |
+
now_dir,
|
| 356 |
+
exp_dir,
|
| 357 |
+
version19,
|
| 358 |
+
)
|
| 359 |
+
)
|
| 360 |
+
logger.info(cmd)
|
| 361 |
+
p = Popen(
|
| 362 |
+
cmd, shell=True, cwd=now_dir
|
| 363 |
+
) # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir
|
| 364 |
+
ps.append(p)
|
| 365 |
+
###煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
|
| 366 |
+
done = [False]
|
| 367 |
+
threading.Thread(
|
| 368 |
+
target=if_done_multi,
|
| 369 |
+
args=(
|
| 370 |
+
done,
|
| 371 |
+
ps,
|
| 372 |
+
),
|
| 373 |
+
).start()
|
| 374 |
+
while 1:
|
| 375 |
+
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f:
|
| 376 |
+
yield (f.read())
|
| 377 |
+
sleep(1)
|
| 378 |
+
if done[0]:
|
| 379 |
+
break
|
| 380 |
+
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f:
|
| 381 |
+
log = f.read()
|
| 382 |
+
logger.info(log)
|
| 383 |
+
yield log
|
| 384 |
+
|
| 385 |
+
|
| 386 |
+
def get_pretrained_models(path_str, f0_str, sr2):
|
| 387 |
+
if_pretrained_generator_exist = os.access(
|
| 388 |
+
"assets/pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2), os.F_OK
|
| 389 |
+
)
|
| 390 |
+
if_pretrained_discriminator_exist = os.access(
|
| 391 |
+
"assets/pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2), os.F_OK
|
| 392 |
+
)
|
| 393 |
+
if not if_pretrained_generator_exist:
|
| 394 |
+
logger.warn(
|
| 395 |
+
"assets/pretrained%s/%sG%s.pth not exist, will not use pretrained model",
|
| 396 |
+
path_str,
|
| 397 |
+
f0_str,
|
| 398 |
+
sr2,
|
| 399 |
+
)
|
| 400 |
+
if not if_pretrained_discriminator_exist:
|
| 401 |
+
logger.warn(
|
| 402 |
+
"assets/pretrained%s/%sD%s.pth not exist, will not use pretrained model",
|
| 403 |
+
path_str,
|
| 404 |
+
f0_str,
|
| 405 |
+
sr2,
|
| 406 |
+
)
|
| 407 |
+
return (
|
| 408 |
+
"assets/pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2)
|
| 409 |
+
if if_pretrained_generator_exist
|
| 410 |
+
else "",
|
| 411 |
+
"assets/pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2)
|
| 412 |
+
if if_pretrained_discriminator_exist
|
| 413 |
+
else "",
|
| 414 |
+
)
|
| 415 |
+
|
| 416 |
+
|
| 417 |
+
def change_sr2(sr2, if_f0_3, version19):
|
| 418 |
+
path_str = "" if version19 == "v1" else "_v2"
|
| 419 |
+
f0_str = "f0" if if_f0_3 else ""
|
| 420 |
+
return get_pretrained_models(path_str, f0_str, sr2)
|
| 421 |
+
|
| 422 |
+
|
| 423 |
+
def change_version19(sr2, if_f0_3, version19):
|
| 424 |
+
path_str = "" if version19 == "v1" else "_v2"
|
| 425 |
+
if sr2 == "32k" and version19 == "v1":
|
| 426 |
+
sr2 = "40k"
|
| 427 |
+
to_return_sr2 = (
|
| 428 |
+
{"choices": ["40k", "48k"], "__type__": "update", "value": sr2}
|
| 429 |
+
if version19 == "v1"
|
| 430 |
+
else {"choices": ["40k", "48k", "32k"], "__type__": "update", "value": sr2}
|
| 431 |
+
)
|
| 432 |
+
f0_str = "f0" if if_f0_3 else ""
|
| 433 |
+
return (
|
| 434 |
+
*get_pretrained_models(path_str, f0_str, sr2),
|
| 435 |
+
to_return_sr2,
|
| 436 |
+
)
|
| 437 |
+
|
| 438 |
+
|
| 439 |
+
def change_f0(if_f0_3, sr2, version19): # f0method8,pretrained_G14,pretrained_D15
|
| 440 |
+
path_str = "" if version19 == "v1" else "_v2"
|
| 441 |
+
return (
|
| 442 |
+
{"visible": if_f0_3, "__type__": "update"},
|
| 443 |
+
*get_pretrained_models(path_str, "f0", sr2),
|
| 444 |
+
)
|
| 445 |
+
|
| 446 |
+
|
| 447 |
+
# but3.click(click_train,[exp_dir1,sr2,if_f0_3,save_epoch10,total_epoch11,batch_size12,if_save_latest13,pretrained_G14,pretrained_D15,gpus16])
|
| 448 |
+
def click_train(
|
| 449 |
+
exp_dir1,
|
| 450 |
+
sr2,
|
| 451 |
+
if_f0_3,
|
| 452 |
+
spk_id5,
|
| 453 |
+
save_epoch10,
|
| 454 |
+
total_epoch11,
|
| 455 |
+
batch_size12,
|
| 456 |
+
if_save_latest13,
|
| 457 |
+
pretrained_G14,
|
| 458 |
+
pretrained_D15,
|
| 459 |
+
gpus16,
|
| 460 |
+
if_cache_gpu17,
|
| 461 |
+
if_save_every_weights18,
|
| 462 |
+
version19,
|
| 463 |
+
):
|
| 464 |
+
# 生成filelist
|
| 465 |
+
exp_dir = "%s/logs/%s" % (now_dir, exp_dir1)
|
| 466 |
+
os.makedirs(exp_dir, exist_ok=True)
|
| 467 |
+
gt_wavs_dir = "%s/0_gt_wavs" % (exp_dir)
|
| 468 |
+
feature_dir = (
|
| 469 |
+
"%s/3_feature256" % (exp_dir)
|
| 470 |
+
if version19 == "v1"
|
| 471 |
+
else "%s/3_feature768" % (exp_dir)
|
| 472 |
+
)
|
| 473 |
+
if if_f0_3:
|
| 474 |
+
f0_dir = "%s/2a_f0" % (exp_dir)
|
| 475 |
+
f0nsf_dir = "%s/2b-f0nsf" % (exp_dir)
|
| 476 |
+
names = (
|
| 477 |
+
set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)])
|
| 478 |
+
& set([name.split(".")[0] for name in os.listdir(feature_dir)])
|
| 479 |
+
& set([name.split(".")[0] for name in os.listdir(f0_dir)])
|
| 480 |
+
& set([name.split(".")[0] for name in os.listdir(f0nsf_dir)])
|
| 481 |
+
)
|
| 482 |
+
else:
|
| 483 |
+
names = set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)]) & set(
|
| 484 |
+
[name.split(".")[0] for name in os.listdir(feature_dir)]
|
| 485 |
+
)
|
| 486 |
+
opt = []
|
| 487 |
+
for name in names:
|
| 488 |
+
if if_f0_3:
|
| 489 |
+
opt.append(
|
| 490 |
+
"%s/%s.wav|%s/%s.npy|%s/%s.wav.npy|%s/%s.wav.npy|%s"
|
| 491 |
+
% (
|
| 492 |
+
gt_wavs_dir.replace("\\", "\\\\"),
|
| 493 |
+
name,
|
| 494 |
+
feature_dir.replace("\\", "\\\\"),
|
| 495 |
+
name,
|
| 496 |
+
f0_dir.replace("\\", "\\\\"),
|
| 497 |
+
name,
|
| 498 |
+
f0nsf_dir.replace("\\", "\\\\"),
|
| 499 |
+
name,
|
| 500 |
+
spk_id5,
|
| 501 |
+
)
|
| 502 |
+
)
|
| 503 |
+
else:
|
| 504 |
+
opt.append(
|
| 505 |
+
"%s/%s.wav|%s/%s.npy|%s"
|
| 506 |
+
% (
|
| 507 |
+
gt_wavs_dir.replace("\\", "\\\\"),
|
| 508 |
+
name,
|
| 509 |
+
feature_dir.replace("\\", "\\\\"),
|
| 510 |
+
name,
|
| 511 |
+
spk_id5,
|
| 512 |
+
)
|
| 513 |
+
)
|
| 514 |
+
fea_dim = 256 if version19 == "v1" else 768
|
| 515 |
+
if if_f0_3:
|
| 516 |
+
for _ in range(2):
|
| 517 |
+
opt.append(
|
| 518 |
+
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s/logs/mute/2a_f0/mute.wav.npy|%s/logs/mute/2b-f0nsf/mute.wav.npy|%s"
|
| 519 |
+
% (now_dir, sr2, now_dir, fea_dim, now_dir, now_dir, spk_id5)
|
| 520 |
+
)
|
| 521 |
+
else:
|
| 522 |
+
for _ in range(2):
|
| 523 |
+
opt.append(
|
| 524 |
+
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s"
|
| 525 |
+
% (now_dir, sr2, now_dir, fea_dim, spk_id5)
|
| 526 |
+
)
|
| 527 |
+
shuffle(opt)
|
| 528 |
+
with open("%s/filelist.txt" % exp_dir, "w") as f:
|
| 529 |
+
f.write("\n".join(opt))
|
| 530 |
+
logger.debug("Write filelist done")
|
| 531 |
+
# 生成config#无需生成config
|
| 532 |
+
# cmd = python_cmd + " train_nsf_sim_cache_sid_load_pretrain.py -e mi-test -sr 40k -f0 1 -bs 4 -g 0 -te 10 -se 5 -pg pretrained/f0G40k.pth -pd pretrained/f0D40k.pth -l 1 -c 0"
|
| 533 |
+
logger.info("Use gpus: %s", str(gpus16))
|
| 534 |
+
if pretrained_G14 == "":
|
| 535 |
+
logger.info("No pretrained Generator")
|
| 536 |
+
if pretrained_D15 == "":
|
| 537 |
+
logger.info("No pretrained Discriminator")
|
| 538 |
+
if version19 == "v1" or sr2 == "40k":
|
| 539 |
+
config_path = "v1/%s.json" % sr2
|
| 540 |
+
else:
|
| 541 |
+
config_path = "v2/%s.json" % sr2
|
| 542 |
+
config_save_path = os.path.join(exp_dir, "config.json")
|
| 543 |
+
if not pathlib.Path(config_save_path).exists():
|
| 544 |
+
with open(config_save_path, "w", encoding="utf-8") as f:
|
| 545 |
+
json.dump(
|
| 546 |
+
config.json_config[config_path],
|
| 547 |
+
f,
|
| 548 |
+
ensure_ascii=False,
|
| 549 |
+
indent=4,
|
| 550 |
+
sort_keys=True,
|
| 551 |
+
)
|
| 552 |
+
f.write("\n")
|
| 553 |
+
if gpus16:
|
| 554 |
+
cmd = (
|
| 555 |
+
'"%s" infer/modules/train/train.py -e "%s" -sr %s -f0 %s -bs %s -g %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s'
|
| 556 |
+
% (
|
| 557 |
+
config.python_cmd,
|
| 558 |
+
exp_dir1,
|
| 559 |
+
sr2,
|
| 560 |
+
1 if if_f0_3 else 0,
|
| 561 |
+
batch_size12,
|
| 562 |
+
gpus16,
|
| 563 |
+
total_epoch11,
|
| 564 |
+
save_epoch10,
|
| 565 |
+
"-pg %s" % pretrained_G14 if pretrained_G14 != "" else "",
|
| 566 |
+
"-pd %s" % pretrained_D15 if pretrained_D15 != "" else "",
|
| 567 |
+
1 if if_save_latest13 == i18n("是") else 0,
|
| 568 |
+
1 if if_cache_gpu17 == i18n("是") else 0,
|
| 569 |
+
1 if if_save_every_weights18 == i18n("是") else 0,
|
| 570 |
+
version19,
|
| 571 |
+
)
|
| 572 |
+
)
|
| 573 |
+
else:
|
| 574 |
+
cmd = (
|
| 575 |
+
'"%s" infer/modules/train/train.py -e "%s" -sr %s -f0 %s -bs %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s'
|
| 576 |
+
% (
|
| 577 |
+
config.python_cmd,
|
| 578 |
+
exp_dir1,
|
| 579 |
+
sr2,
|
| 580 |
+
1 if if_f0_3 else 0,
|
| 581 |
+
batch_size12,
|
| 582 |
+
total_epoch11,
|
| 583 |
+
save_epoch10,
|
| 584 |
+
"-pg %s" % pretrained_G14 if pretrained_G14 != "" else "",
|
| 585 |
+
"-pd %s" % pretrained_D15 if pretrained_D15 != "" else "",
|
| 586 |
+
1 if if_save_latest13 == i18n("是") else 0,
|
| 587 |
+
1 if if_cache_gpu17 == i18n("是") else 0,
|
| 588 |
+
1 if if_save_every_weights18 == i18n("是") else 0,
|
| 589 |
+
version19,
|
| 590 |
+
)
|
| 591 |
+
)
|
| 592 |
+
logger.info(cmd)
|
| 593 |
+
p = Popen(cmd, shell=True, cwd=now_dir)
|
| 594 |
+
p.wait()
|
| 595 |
+
return "训练结束, 您可查看控制台训练日志或实验文件夹下的train.log"
|
| 596 |
+
|
| 597 |
+
|
| 598 |
+
# but4.click(train_index, [exp_dir1], info3)
|
| 599 |
+
def train_index(exp_dir1, version19):
|
| 600 |
+
# exp_dir = "%s/logs/%s" % (now_dir, exp_dir1)
|
| 601 |
+
exp_dir = "logs/%s" % (exp_dir1)
|
| 602 |
+
os.makedirs(exp_dir, exist_ok=True)
|
| 603 |
+
feature_dir = (
|
| 604 |
+
"%s/3_feature256" % (exp_dir)
|
| 605 |
+
if version19 == "v1"
|
| 606 |
+
else "%s/3_feature768" % (exp_dir)
|
| 607 |
+
)
|
| 608 |
+
if not os.path.exists(feature_dir):
|
| 609 |
+
return "请先进行特征提取!"
|
| 610 |
+
listdir_res = list(os.listdir(feature_dir))
|
| 611 |
+
if len(listdir_res) == 0:
|
| 612 |
+
return "请先进行特征提取!"
|
| 613 |
+
infos = []
|
| 614 |
+
npys = []
|
| 615 |
+
for name in sorted(listdir_res):
|
| 616 |
+
phone = np.load("%s/%s" % (feature_dir, name))
|
| 617 |
+
npys.append(phone)
|
| 618 |
+
big_npy = np.concatenate(npys, 0)
|
| 619 |
+
big_npy_idx = np.arange(big_npy.shape[0])
|
| 620 |
+
np.random.shuffle(big_npy_idx)
|
| 621 |
+
big_npy = big_npy[big_npy_idx]
|
| 622 |
+
if big_npy.shape[0] > 2e5:
|
| 623 |
+
infos.append("Trying doing kmeans %s shape to 10k centers." % big_npy.shape[0])
|
| 624 |
+
yield "\n".join(infos)
|
| 625 |
+
try:
|
| 626 |
+
big_npy = (
|
| 627 |
+
MiniBatchKMeans(
|
| 628 |
+
n_clusters=10000,
|
| 629 |
+
verbose=True,
|
| 630 |
+
batch_size=256 * config.n_cpu,
|
| 631 |
+
compute_labels=False,
|
| 632 |
+
init="random",
|
| 633 |
+
)
|
| 634 |
+
.fit(big_npy)
|
| 635 |
+
.cluster_centers_
|
| 636 |
+
)
|
| 637 |
+
except:
|
| 638 |
+
info = traceback.format_exc()
|
| 639 |
+
logger.info(info)
|
| 640 |
+
infos.append(info)
|
| 641 |
+
yield "\n".join(infos)
|
| 642 |
+
|
| 643 |
+
np.save("%s/total_fea.npy" % exp_dir, big_npy)
|
| 644 |
+
n_ivf = min(int(16 * np.sqrt(big_npy.shape[0])), big_npy.shape[0] // 39)
|
| 645 |
+
infos.append("%s,%s" % (big_npy.shape, n_ivf))
|
| 646 |
+
yield "\n".join(infos)
|
| 647 |
+
index = faiss.index_factory(256 if version19 == "v1" else 768, "IVF%s,Flat" % n_ivf)
|
| 648 |
+
# index = faiss.index_factory(256if version19=="v1"else 768, "IVF%s,PQ128x4fs,RFlat"%n_ivf)
|
| 649 |
+
infos.append("training")
|
| 650 |
+
yield "\n".join(infos)
|
| 651 |
+
index_ivf = faiss.extract_index_ivf(index) #
|
| 652 |
+
index_ivf.nprobe = 1
|
| 653 |
+
index.train(big_npy)
|
| 654 |
+
faiss.write_index(
|
| 655 |
+
index,
|
| 656 |
+
"%s/trained_IVF%s_Flat_nprobe_%s_%s_%s.index"
|
| 657 |
+
% (exp_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19),
|
| 658 |
+
)
|
| 659 |
+
|
| 660 |
+
infos.append("adding")
|
| 661 |
+
yield "\n".join(infos)
|
| 662 |
+
batch_size_add = 8192
|
| 663 |
+
for i in range(0, big_npy.shape[0], batch_size_add):
|
| 664 |
+
index.add(big_npy[i : i + batch_size_add])
|
| 665 |
+
faiss.write_index(
|
| 666 |
+
index,
|
| 667 |
+
"%s/added_IVF%s_Flat_nprobe_%s_%s_%s.index"
|
| 668 |
+
% (exp_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19),
|
| 669 |
+
)
|
| 670 |
+
infos.append(
|
| 671 |
+
"成功构建索引,added_IVF%s_Flat_nprobe_%s_%s_%s.index"
|
| 672 |
+
% (n_ivf, index_ivf.nprobe, exp_dir1, version19)
|
| 673 |
+
)
|
| 674 |
+
# faiss.write_index(index, '%s/added_IVF%s_Flat_FastScan_%s.index'%(exp_dir,n_ivf,version19))
|
| 675 |
+
# infos.append("成功构建索引,added_IVF%s_Flat_FastScan_%s.index"%(n_ivf,version19))
|
| 676 |
+
yield "\n".join(infos)
|
| 677 |
+
|
| 678 |
+
|
| 679 |
+
# but5.click(train1key, [exp_dir1, sr2, if_f0_3, trainset_dir4, spk_id5, gpus6, np7, f0method8, save_epoch10, total_epoch11, batch_size12, if_save_latest13, pretrained_G14, pretrained_D15, gpus16, if_cache_gpu17], info3)
|
| 680 |
+
def train1key(
|
| 681 |
+
exp_dir1,
|
| 682 |
+
sr2,
|
| 683 |
+
if_f0_3,
|
| 684 |
+
trainset_dir4,
|
| 685 |
+
spk_id5,
|
| 686 |
+
np7,
|
| 687 |
+
f0method8,
|
| 688 |
+
save_epoch10,
|
| 689 |
+
total_epoch11,
|
| 690 |
+
batch_size12,
|
| 691 |
+
if_save_latest13,
|
| 692 |
+
pretrained_G14,
|
| 693 |
+
pretrained_D15,
|
| 694 |
+
gpus16,
|
| 695 |
+
if_cache_gpu17,
|
| 696 |
+
if_save_every_weights18,
|
| 697 |
+
version19,
|
| 698 |
+
gpus_rmvpe,
|
| 699 |
+
):
|
| 700 |
+
infos = []
|
| 701 |
+
|
| 702 |
+
def get_info_str(strr):
|
| 703 |
+
infos.append(strr)
|
| 704 |
+
return "\n".join(infos)
|
| 705 |
+
|
| 706 |
+
####### step1:处理数据
|
| 707 |
+
yield get_info_str(i18n("step1:正在处理数据"))
|
| 708 |
+
[get_info_str(_) for _ in preprocess_dataset(trainset_dir4, exp_dir1, sr2, np7)]
|
| 709 |
+
|
| 710 |
+
####### step2a:提取音高
|
| 711 |
+
yield get_info_str(i18n("step2:正在提取音高&正在提取特征"))
|
| 712 |
+
[
|
| 713 |
+
get_info_str(_)
|
| 714 |
+
for _ in extract_f0_feature(
|
| 715 |
+
gpus16, np7, f0method8, if_f0_3, exp_dir1, version19, gpus_rmvpe
|
| 716 |
+
)
|
| 717 |
+
]
|
| 718 |
+
|
| 719 |
+
####### step3a:训练模型
|
| 720 |
+
yield get_info_str(i18n("step3a:正在训练模型"))
|
| 721 |
+
click_train(
|
| 722 |
+
exp_dir1,
|
| 723 |
+
sr2,
|
| 724 |
+
if_f0_3,
|
| 725 |
+
spk_id5,
|
| 726 |
+
save_epoch10,
|
| 727 |
+
total_epoch11,
|
| 728 |
+
batch_size12,
|
| 729 |
+
if_save_latest13,
|
| 730 |
+
pretrained_G14,
|
| 731 |
+
pretrained_D15,
|
| 732 |
+
gpus16,
|
| 733 |
+
if_cache_gpu17,
|
| 734 |
+
if_save_every_weights18,
|
| 735 |
+
version19,
|
| 736 |
+
)
|
| 737 |
+
yield get_info_str(i18n("训练结束, 您可查看控制台训练日志或实验文件夹下的train.log"))
|
| 738 |
+
|
| 739 |
+
####### step3b:训练索引
|
| 740 |
+
[get_info_str(_) for _ in train_index(exp_dir1, version19)]
|
| 741 |
+
yield get_info_str(i18n("全流程结束!"))
|
| 742 |
+
|
| 743 |
+
|
| 744 |
+
# ckpt_path2.change(change_info_,[ckpt_path2],[sr__,if_f0__])
|
| 745 |
+
def change_info_(ckpt_path):
|
| 746 |
+
if not os.path.exists(ckpt_path.replace(os.path.basename(ckpt_path), "train.log")):
|
| 747 |
+
return {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"}
|
| 748 |
+
try:
|
| 749 |
+
with open(
|
| 750 |
+
ckpt_path.replace(os.path.basename(ckpt_path), "train.log"), "r"
|
| 751 |
+
) as f:
|
| 752 |
+
info = eval(f.read().strip("\n").split("\n")[0].split("\t")[-1])
|
| 753 |
+
sr, f0 = info["sample_rate"], info["if_f0"]
|
| 754 |
+
version = "v2" if ("version" in info and info["version"] == "v2") else "v1"
|
| 755 |
+
return sr, str(f0), version
|
| 756 |
+
except:
|
| 757 |
+
traceback.print_exc()
|
| 758 |
+
return {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"}
|
| 759 |
+
|
| 760 |
+
|
| 761 |
+
F0GPUVisible = config.dml == False
|
| 762 |
+
|
| 763 |
+
|
| 764 |
+
def change_f0_method(f0method8):
|
| 765 |
+
if f0method8 == "rmvpe_gpu":
|
| 766 |
+
visible = F0GPUVisible
|
| 767 |
+
else:
|
| 768 |
+
visible = False
|
| 769 |
+
return {"visible": visible, "__type__": "update"}
|
| 770 |
+
|
| 771 |
+
def find_model():
|
| 772 |
+
if len(names) > 0:
|
| 773 |
+
vc.get_vc(sorted(names)[0],None,None)
|
| 774 |
+
return sorted(names)[0]
|
| 775 |
+
else:
|
| 776 |
+
try:
|
| 777 |
+
gr.Info("Do not forget to choose a model.")
|
| 778 |
+
except:
|
| 779 |
+
pass
|
| 780 |
+
return ''
|
| 781 |
+
|
| 782 |
+
def find_audios(index=False):
|
| 783 |
+
audio_files=[]
|
| 784 |
+
if not os.path.exists('./audios'): os.mkdir("./audios")
|
| 785 |
+
for filename in os.listdir("./audios"):
|
| 786 |
+
if filename.endswith(('.wav','.mp3','.ogg')):
|
| 787 |
+
audio_files.append("./audios/"+filename)
|
| 788 |
+
if index:
|
| 789 |
+
if len(audio_files) > 0: return sorted(audio_files)[0]
|
| 790 |
+
else: return ""
|
| 791 |
+
elif len(audio_files) > 0: return sorted(audio_files)
|
| 792 |
+
else: return []
|
| 793 |
+
|
| 794 |
+
def get_index():
|
| 795 |
+
if find_model() != '':
|
| 796 |
+
chosen_model=sorted(names)[0].split(".")[0]
|
| 797 |
+
logs_path="./logs/"+chosen_model
|
| 798 |
+
if os.path.exists(logs_path):
|
| 799 |
+
for file in os.listdir(logs_path):
|
| 800 |
+
if file.endswith(".index"):
|
| 801 |
+
return os.path.join(logs_path, file)
|
| 802 |
+
return ''
|
| 803 |
+
else:
|
| 804 |
+
return ''
|
| 805 |
+
|
| 806 |
+
def get_indexes():
|
| 807 |
+
indexes_list=[]
|
| 808 |
+
for dirpath, dirnames, filenames in os.walk("./logs/"):
|
| 809 |
+
for filename in filenames:
|
| 810 |
+
if filename.endswith(".index"):
|
| 811 |
+
indexes_list.append(os.path.join(dirpath,filename))
|
| 812 |
+
if len(indexes_list) > 0:
|
| 813 |
+
return indexes_list
|
| 814 |
+
else:
|
| 815 |
+
return ''
|
| 816 |
+
|
| 817 |
+
def save_wav(file):
|
| 818 |
+
try:
|
| 819 |
+
file_path=file.name
|
| 820 |
+
shutil.move(file_path,'./audios')
|
| 821 |
+
return './audios/'+os.path.basename(file_path)
|
| 822 |
+
except AttributeError:
|
| 823 |
+
try:
|
| 824 |
+
new_name = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")+'.wav'
|
| 825 |
+
new_path='./audios/'+new_name
|
| 826 |
+
shutil.move(file,new_path)
|
| 827 |
+
return new_path
|
| 828 |
+
except TypeError:
|
| 829 |
+
return None
|
| 830 |
+
|
| 831 |
+
def download_from_url(url, model):
|
| 832 |
+
if url == '':
|
| 833 |
+
return "URL cannot be left empty."
|
| 834 |
+
if model =='':
|
| 835 |
+
return "You need to name your model. For example: My-Model"
|
| 836 |
+
url = url.strip()
|
| 837 |
+
zip_dirs = ["zips", "unzips"]
|
| 838 |
+
for directory in zip_dirs:
|
| 839 |
+
if os.path.exists(directory):
|
| 840 |
+
shutil.rmtree(directory)
|
| 841 |
+
os.makedirs("zips", exist_ok=True)
|
| 842 |
+
os.makedirs("unzips", exist_ok=True)
|
| 843 |
+
zipfile = model + '.zip'
|
| 844 |
+
zipfile_path = './zips/' + zipfile
|
| 845 |
+
try:
|
| 846 |
+
if "drive.google.com" in url:
|
| 847 |
+
subprocess.run(["gdown", url, "--fuzzy", "-O", zipfile_path])
|
| 848 |
+
elif "mega.nz" in url:
|
| 849 |
+
m = Mega()
|
| 850 |
+
m.download_url(url, './zips')
|
| 851 |
+
else:
|
| 852 |
+
subprocess.run(["wget", url, "-O", zipfile_path])
|
| 853 |
+
for filename in os.listdir("./zips"):
|
| 854 |
+
if filename.endswith(".zip"):
|
| 855 |
+
zipfile_path = os.path.join("./zips/",filename)
|
| 856 |
+
shutil.unpack_archive(zipfile_path, "./unzips", 'zip')
|
| 857 |
+
else:
|
| 858 |
+
return "No zipfile found."
|
| 859 |
+
for root, dirs, files in os.walk('./unzips'):
|
| 860 |
+
for file in files:
|
| 861 |
+
file_path = os.path.join(root, file)
|
| 862 |
+
if file.endswith(".index"):
|
| 863 |
+
os.mkdir(f'./logs/{model}')
|
| 864 |
+
shutil.copy2(file_path,f'./logs/{model}')
|
| 865 |
+
elif "G_" not in file and "D_" not in file and file.endswith(".pth"):
|
| 866 |
+
shutil.copy(file_path,f'./assets/weights/{model}.pth')
|
| 867 |
+
shutil.rmtree("zips")
|
| 868 |
+
shutil.rmtree("unzips")
|
| 869 |
+
return "Success."
|
| 870 |
+
except:
|
| 871 |
+
return "There's been an error."
|
| 872 |
+
|
| 873 |
+
def upload_to_dataset(files, dir):
|
| 874 |
+
if dir == '':
|
| 875 |
+
dir = './dataset/'+datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
|
| 876 |
+
if not os.path.exists(dir):
|
| 877 |
+
os.makedirs(dir)
|
| 878 |
+
for file in files:
|
| 879 |
+
path=file.name
|
| 880 |
+
shutil.copy2(path,dir)
|
| 881 |
+
try:
|
| 882 |
+
gr.Info(i18n("处理数据"))
|
| 883 |
+
except:
|
| 884 |
+
pass
|
| 885 |
+
return i18n("处理数据"), {"value":dir,"__type__":"update"}
|
| 886 |
+
|
| 887 |
+
with gr.Blocks(title="EasyGUI v2.9",theme=gr.themes.Base()) as app:
|
| 888 |
+
gr.HTML("<h1> EasyGUI v2.9 </h1>")
|
| 889 |
+
with gr.Tabs():
|
| 890 |
+
with gr.TabItem(i18n("模型推理")):
|
| 891 |
+
with gr.Row():
|
| 892 |
+
sid0 = gr.Dropdown(label=i18n("推理音色"), choices=sorted(names), value=find_model())
|
| 893 |
+
refresh_button = gr.Button(i18n("刷新音色列表和索引路径"), variant="primary")
|
| 894 |
+
#clean_button = gr.Button(i18n("卸载音色省显存"), variant="primary")
|
| 895 |
+
spk_item = gr.Slider(
|
| 896 |
+
minimum=0,
|
| 897 |
+
maximum=2333,
|
| 898 |
+
step=1,
|
| 899 |
+
label=i18n("请选择说话人id"),
|
| 900 |
+
value=0,
|
| 901 |
+
visible=False,
|
| 902 |
+
interactive=True,
|
| 903 |
+
)
|
| 904 |
+
#clean_button.click(
|
| 905 |
+
# fn=clean, inputs=[], outputs=[sid0], api_name="infer_clean"
|
| 906 |
+
#)
|
| 907 |
+
vc_transform0 = gr.Number(
|
| 908 |
+
label=i18n("变调(整数, 半音数量, 升八度12降八度-12)"), value=0
|
| 909 |
+
)
|
| 910 |
+
but0 = gr.Button(i18n("转换"), variant="primary")
|
| 911 |
+
with gr.Row():
|
| 912 |
+
with gr.Column():
|
| 913 |
+
with gr.Row():
|
| 914 |
+
dropbox = gr.File(label="Drop your audio here & hit the Reload button.")
|
| 915 |
+
with gr.Row():
|
| 916 |
+
record_button=gr.Audio(source="microphone", label="OR Record audio.", type="filepath")
|
| 917 |
+
with gr.Row():
|
| 918 |
+
input_audio0 = gr.Dropdown(
|
| 919 |
+
label=i18n("输入待处理音频文件路径(默认是正确格式示例)"),
|
| 920 |
+
value=find_audios(True),
|
| 921 |
+
choices=find_audios()
|
| 922 |
+
)
|
| 923 |
+
record_button.change(fn=save_wav, inputs=[record_button], outputs=[input_audio0])
|
| 924 |
+
dropbox.upload(fn=save_wav, inputs=[dropbox], outputs=[input_audio0])
|
| 925 |
+
with gr.Column():
|
| 926 |
+
with gr.Accordion(label=i18n("自动检测index路径,下拉式选择(dropdown)"), open=False):
|
| 927 |
+
file_index2 = gr.Dropdown(
|
| 928 |
+
label=i18n("自动检测index路径,下拉式选择(dropdown)"),
|
| 929 |
+
choices=get_indexes(),
|
| 930 |
+
interactive=True,
|
| 931 |
+
value=get_index()
|
| 932 |
+
)
|
| 933 |
+
index_rate1 = gr.Slider(
|
| 934 |
+
minimum=0,
|
| 935 |
+
maximum=1,
|
| 936 |
+
label=i18n("检索特征占比"),
|
| 937 |
+
value=0.66,
|
| 938 |
+
interactive=True,
|
| 939 |
+
)
|
| 940 |
+
vc_output2 = gr.Audio(label=i18n("输出音频(右下角三个点,点了可以下载)"))
|
| 941 |
+
with gr.Accordion(label=i18n("常规设置"), open=False):
|
| 942 |
+
f0method0 = gr.Radio(
|
| 943 |
+
label=i18n(
|
| 944 |
+
"选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU,rmvpe效果最好且微吃GPU"
|
| 945 |
+
),
|
| 946 |
+
choices=["pm", "harvest", "crepe", "rmvpe"]
|
| 947 |
+
if config.dml == False
|
| 948 |
+
else ["pm", "harvest", "rmvpe"],
|
| 949 |
+
value="rmvpe",
|
| 950 |
+
interactive=True,
|
| 951 |
+
)
|
| 952 |
+
filter_radius0 = gr.Slider(
|
| 953 |
+
minimum=0,
|
| 954 |
+
maximum=7,
|
| 955 |
+
label=i18n(">=3则使用对harvest音高识别的结果使用中值滤波,数值为滤波半径,使用可以削弱哑音"),
|
| 956 |
+
value=3,
|
| 957 |
+
step=1,
|
| 958 |
+
interactive=True,
|
| 959 |
+
)
|
| 960 |
+
resample_sr0 = gr.Slider(
|
| 961 |
+
minimum=0,
|
| 962 |
+
maximum=48000,
|
| 963 |
+
label=i18n("后处理重采样至最终采样率,0为不进行重采样"),
|
| 964 |
+
value=0,
|
| 965 |
+
step=1,
|
| 966 |
+
interactive=True,
|
| 967 |
+
)
|
| 968 |
+
rms_mix_rate0 = gr.Slider(
|
| 969 |
+
minimum=0,
|
| 970 |
+
maximum=1,
|
| 971 |
+
label=i18n("输入源音量包络替换输出音量包络融合比例,越靠近1越使用输出包络"),
|
| 972 |
+
value=0.21,
|
| 973 |
+
interactive=True,
|
| 974 |
+
)
|
| 975 |
+
protect0 = gr.Slider(
|
| 976 |
+
minimum=0,
|
| 977 |
+
maximum=0.5,
|
| 978 |
+
label=i18n(
|
| 979 |
+
"保护清辅音和呼吸声,防止电音撕裂等artifact,拉满0.5不开启,调低加大保护力度但可能降低索引效果"
|
| 980 |
+
),
|
| 981 |
+
value=0.33,
|
| 982 |
+
step=0.01,
|
| 983 |
+
interactive=True,
|
| 984 |
+
)
|
| 985 |
+
file_index1 = gr.Textbox(
|
| 986 |
+
label=i18n("特征检索库文件路径,为空则使用下拉的选择结果"),
|
| 987 |
+
value="",
|
| 988 |
+
interactive=True,
|
| 989 |
+
visible=False
|
| 990 |
+
)
|
| 991 |
+
refresh_button.click(
|
| 992 |
+
fn=change_choices,
|
| 993 |
+
inputs=[],
|
| 994 |
+
outputs=[sid0, file_index2, input_audio0],
|
| 995 |
+
api_name="infer_refresh",
|
| 996 |
+
)
|
| 997 |
+
# file_big_npy1 = gr.Textbox(
|
| 998 |
+
# label=i18n("特征文件路径"),
|
| 999 |
+
# value="E:\\codes\py39\\vits_vc_gpu_train\\logs\\mi-test-1key\\total_fea.npy",
|
| 1000 |
+
# interactive=True,
|
| 1001 |
+
# )
|
| 1002 |
+
with gr.Row():
|
| 1003 |
+
f0_file = gr.File(label=i18n("F0曲线文件, 可选, 一行一个音高, 代替默认F0及升降调"), visible=False)
|
| 1004 |
+
with gr.Row():
|
| 1005 |
+
vc_output1 = gr.Textbox(label=i18n("输出信息"))
|
| 1006 |
+
but0.click(
|
| 1007 |
+
vc.vc_single,
|
| 1008 |
+
[
|
| 1009 |
+
spk_item,
|
| 1010 |
+
input_audio0,
|
| 1011 |
+
vc_transform0,
|
| 1012 |
+
f0_file,
|
| 1013 |
+
f0method0,
|
| 1014 |
+
file_index1,
|
| 1015 |
+
file_index2,
|
| 1016 |
+
# file_big_npy1,
|
| 1017 |
+
index_rate1,
|
| 1018 |
+
filter_radius0,
|
| 1019 |
+
resample_sr0,
|
| 1020 |
+
rms_mix_rate0,
|
| 1021 |
+
protect0,
|
| 1022 |
+
],
|
| 1023 |
+
[vc_output1, vc_output2],
|
| 1024 |
+
api_name="infer_convert",
|
| 1025 |
+
)
|
| 1026 |
+
with gr.Row():
|
| 1027 |
+
with gr.Accordion(open=False, label=i18n("批量转换, 输入待转换音频文件夹, 或上传多个音频文件, 在指定文件夹(默认opt)下输出转换的音频. ")):
|
| 1028 |
+
with gr.Column():
|
| 1029 |
+
vc_transform1 = gr.Number(
|
| 1030 |
+
label=i18n("变调(整数, 半音数量, 升八度12降八度-12)"), value=0
|
| 1031 |
+
)
|
| 1032 |
+
opt_input = gr.Textbox(label=i18n("指定输出文件夹"), value="opt")
|
| 1033 |
+
f0method1 = gr.Radio(
|
| 1034 |
+
label=i18n(
|
| 1035 |
+
"选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU,rmvpe效果最好且微吃GPU"
|
| 1036 |
+
),
|
| 1037 |
+
choices=["pm", "harvest", "crepe", "rmvpe"]
|
| 1038 |
+
if config.dml == False
|
| 1039 |
+
else ["pm", "harvest", "rmvpe"],
|
| 1040 |
+
value="pm",
|
| 1041 |
+
interactive=True,
|
| 1042 |
+
)
|
| 1043 |
+
filter_radius1 = gr.Slider(
|
| 1044 |
+
minimum=0,
|
| 1045 |
+
maximum=7,
|
| 1046 |
+
label=i18n(">=3则使用对harvest音高识别的结果使用中值滤波,数值为滤波半径,使用可以削弱哑音"),
|
| 1047 |
+
value=3,
|
| 1048 |
+
step=1,
|
| 1049 |
+
interactive=True,
|
| 1050 |
+
)
|
| 1051 |
+
with gr.Column():
|
| 1052 |
+
file_index3 = gr.Textbox(
|
| 1053 |
+
label=i18n("特征检索库文件路径,为空则使用下拉的选择结果"),
|
| 1054 |
+
value="",
|
| 1055 |
+
interactive=True,
|
| 1056 |
+
visible=False
|
| 1057 |
+
)
|
| 1058 |
+
file_index4 = gr.Dropdown(
|
| 1059 |
+
label=i18n("自动检测index路径,下拉式选择(dropdown)"),
|
| 1060 |
+
choices=sorted(index_paths),
|
| 1061 |
+
interactive=True,
|
| 1062 |
+
)
|
| 1063 |
+
refresh_button.click(
|
| 1064 |
+
fn=lambda: change_choices()[1],
|
| 1065 |
+
inputs=[],
|
| 1066 |
+
outputs=file_index4,
|
| 1067 |
+
api_name="infer_refresh_batch",
|
| 1068 |
+
)
|
| 1069 |
+
# file_big_npy2 = gr.Textbox(
|
| 1070 |
+
# label=i18n("特征文件路径"),
|
| 1071 |
+
# value="E:\\codes\\py39\\vits_vc_gpu_train\\logs\\mi-test-1key\\total_fea.npy",
|
| 1072 |
+
# interactive=True,
|
| 1073 |
+
# )
|
| 1074 |
+
index_rate2 = gr.Slider(
|
| 1075 |
+
minimum=0,
|
| 1076 |
+
maximum=1,
|
| 1077 |
+
label=i18n("检索特征占比"),
|
| 1078 |
+
value=1,
|
| 1079 |
+
interactive=True,
|
| 1080 |
+
)
|
| 1081 |
+
with gr.Column():
|
| 1082 |
+
resample_sr1 = gr.Slider(
|
| 1083 |
+
minimum=0,
|
| 1084 |
+
maximum=48000,
|
| 1085 |
+
label=i18n("后处理重采样至最终采样率,0为不进行重采样"),
|
| 1086 |
+
value=0,
|
| 1087 |
+
step=1,
|
| 1088 |
+
interactive=True,
|
| 1089 |
+
)
|
| 1090 |
+
rms_mix_rate1 = gr.Slider(
|
| 1091 |
+
minimum=0,
|
| 1092 |
+
maximum=1,
|
| 1093 |
+
label=i18n("输入源音量包络替换输出音量包络融合比例,越靠近1越使用输出包络"),
|
| 1094 |
+
value=1,
|
| 1095 |
+
interactive=True,
|
| 1096 |
+
)
|
| 1097 |
+
protect1 = gr.Slider(
|
| 1098 |
+
minimum=0,
|
| 1099 |
+
maximum=0.5,
|
| 1100 |
+
label=i18n(
|
| 1101 |
+
"保护清辅音和呼吸声,防止电音撕裂等artifact,拉满0.5不开启,调低加大保护力度但可能降低索引效果"
|
| 1102 |
+
),
|
| 1103 |
+
value=0.33,
|
| 1104 |
+
step=0.01,
|
| 1105 |
+
interactive=True,
|
| 1106 |
+
)
|
| 1107 |
+
with gr.Column():
|
| 1108 |
+
dir_input = gr.Textbox(
|
| 1109 |
+
label=i18n("输入待处理音频文件夹路径(去文件管理器地址栏拷就行了)"),
|
| 1110 |
+
value="E:\codes\py39\\test-20230416b\\todo-songs",
|
| 1111 |
+
)
|
| 1112 |
+
inputs = gr.File(
|
| 1113 |
+
file_count="multiple", label=i18n("也可批量输入音频文件, 二选一, 优先读文件夹")
|
| 1114 |
+
)
|
| 1115 |
+
with gr.Row():
|
| 1116 |
+
format1 = gr.Radio(
|
| 1117 |
+
label=i18n("导出文件格式"),
|
| 1118 |
+
choices=["wav", "flac", "mp3", "m4a"],
|
| 1119 |
+
value="flac",
|
| 1120 |
+
interactive=True,
|
| 1121 |
+
)
|
| 1122 |
+
but1 = gr.Button(i18n("转换"), variant="primary")
|
| 1123 |
+
vc_output3 = gr.Textbox(label=i18n("输出信息"))
|
| 1124 |
+
but1.click(
|
| 1125 |
+
vc.vc_multi,
|
| 1126 |
+
[
|
| 1127 |
+
spk_item,
|
| 1128 |
+
dir_input,
|
| 1129 |
+
opt_input,
|
| 1130 |
+
inputs,
|
| 1131 |
+
vc_transform1,
|
| 1132 |
+
f0method1,
|
| 1133 |
+
file_index3,
|
| 1134 |
+
file_index4,
|
| 1135 |
+
# file_big_npy2,
|
| 1136 |
+
index_rate2,
|
| 1137 |
+
filter_radius1,
|
| 1138 |
+
resample_sr1,
|
| 1139 |
+
rms_mix_rate1,
|
| 1140 |
+
protect1,
|
| 1141 |
+
format1,
|
| 1142 |
+
],
|
| 1143 |
+
[vc_output3],
|
| 1144 |
+
api_name="infer_convert_batch",
|
| 1145 |
+
)
|
| 1146 |
+
sid0.change(
|
| 1147 |
+
fn=vc.get_vc,
|
| 1148 |
+
inputs=[sid0, protect0, protect1],
|
| 1149 |
+
outputs=[spk_item, protect0, protect1, file_index2, file_index4],
|
| 1150 |
+
)
|
| 1151 |
+
with gr.TabItem("Download Model"):
|
| 1152 |
+
with gr.Row():
|
| 1153 |
+
url=gr.Textbox(label="Enter the URL to the Model:")
|
| 1154 |
+
with gr.Row():
|
| 1155 |
+
model = gr.Textbox(label="Name your model:")
|
| 1156 |
+
download_button=gr.Button("Download")
|
| 1157 |
+
with gr.Row():
|
| 1158 |
+
status_bar=gr.Textbox(label="")
|
| 1159 |
+
download_button.click(fn=download_from_url, inputs=[url, model], outputs=[status_bar])
|
| 1160 |
+
with gr.Row():
|
| 1161 |
+
gr.Markdown(
|
| 1162 |
+
"""
|
| 1163 |
+
❤️ If you like the EasyGUI, help me keep it.❤️
|
| 1164 |
+
https://paypal.me/lesantillan
|
| 1165 |
+
"""
|
| 1166 |
+
)
|
| 1167 |
+
with gr.TabItem(i18n("训练")):
|
| 1168 |
+
with gr.Row():
|
| 1169 |
+
with gr.Column():
|
| 1170 |
+
exp_dir1 = gr.Textbox(label=i18n("输入实验名"), value="My-Voice")
|
| 1171 |
+
np7 = gr.Slider(
|
| 1172 |
+
minimum=0,
|
| 1173 |
+
maximum=config.n_cpu,
|
| 1174 |
+
step=1,
|
| 1175 |
+
label=i18n("提取音高和处理数据使用的CPU进程数"),
|
| 1176 |
+
value=int(np.ceil(config.n_cpu / 1.5)),
|
| 1177 |
+
interactive=True,
|
| 1178 |
+
)
|
| 1179 |
+
sr2 = gr.Radio(
|
| 1180 |
+
label=i18n("目标采样率"),
|
| 1181 |
+
choices=["40k", "48k"],
|
| 1182 |
+
value="40k",
|
| 1183 |
+
interactive=True,
|
| 1184 |
+
visible=False
|
| 1185 |
+
)
|
| 1186 |
+
if_f0_3 = gr.Radio(
|
| 1187 |
+
label=i18n("模型是否带音高指导(唱歌一定要, 语音可以不要)"),
|
| 1188 |
+
choices=[True, False],
|
| 1189 |
+
value=True,
|
| 1190 |
+
interactive=True,
|
| 1191 |
+
visible=False
|
| 1192 |
+
)
|
| 1193 |
+
version19 = gr.Radio(
|
| 1194 |
+
label=i18n("版本"),
|
| 1195 |
+
choices=["v1", "v2"],
|
| 1196 |
+
value="v2",
|
| 1197 |
+
interactive=True,
|
| 1198 |
+
visible=False,
|
| 1199 |
+
)
|
| 1200 |
+
trainset_dir4 = gr.Textbox(
|
| 1201 |
+
label=i18n("输入训练文件夹路径"), value='./dataset/'+datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
|
| 1202 |
+
)
|
| 1203 |
+
easy_uploader = gr.Files(label=i18n("也可批量输入音频文件, 二选一, 优先读文件夹"),file_types=['audio'])
|
| 1204 |
+
but1 = gr.Button(label=i18n("处理数据"), variant="primary")
|
| 1205 |
+
info1 = gr.Textbox(label=i18n("输出信息"), value="")
|
| 1206 |
+
easy_uploader.upload(fn=upload_to_dataset, inputs=[easy_uploader, trainset_dir4], outputs=[info1, trainset_dir4])
|
| 1207 |
+
gpus6 = gr.Textbox(
|
| 1208 |
+
label=i18n("以-分隔输入使用的卡号, 例如 0-1-2 使用卡0和卡1和卡2"),
|
| 1209 |
+
value=gpus,
|
| 1210 |
+
interactive=True,
|
| 1211 |
+
visible=F0GPUVisible,
|
| 1212 |
+
)
|
| 1213 |
+
gpu_info9 = gr.Textbox(
|
| 1214 |
+
label=i18n("显卡信息"), value=gpu_info, visible=F0GPUVisible
|
| 1215 |
+
)
|
| 1216 |
+
spk_id5 = gr.Slider(
|
| 1217 |
+
minimum=0,
|
| 1218 |
+
maximum=4,
|
| 1219 |
+
step=1,
|
| 1220 |
+
label=i18n("请指定说话人id"),
|
| 1221 |
+
value=0,
|
| 1222 |
+
interactive=True,
|
| 1223 |
+
visible=False
|
| 1224 |
+
)
|
| 1225 |
+
but1.click(
|
| 1226 |
+
preprocess_dataset,
|
| 1227 |
+
[trainset_dir4, exp_dir1, sr2, np7],
|
| 1228 |
+
[info1],
|
| 1229 |
+
api_name="train_preprocess",
|
| 1230 |
+
)
|
| 1231 |
+
with gr.Column():
|
| 1232 |
+
f0method8 = gr.Radio(
|
| 1233 |
+
label=i18n(
|
| 1234 |
+
"选择音高提取算法:输入歌声可用pm提速,高质量语音但CPU差可用dio提速,harvest质量更好但慢,rmvpe效果最好且微吃CPU/GPU"
|
| 1235 |
+
),
|
| 1236 |
+
choices=["pm", "harvest", "dio", "rmvpe", "rmvpe_gpu"],
|
| 1237 |
+
value="rmvpe_gpu",
|
| 1238 |
+
interactive=True,
|
| 1239 |
+
)
|
| 1240 |
+
gpus_rmvpe = gr.Textbox(
|
| 1241 |
+
label=i18n(
|
| 1242 |
+
"rmvpe卡号配置:以-分隔输入使用的不同进程卡号,例如0-0-1使用在卡0上跑2个进程并在卡1上跑1个进程"
|
| 1243 |
+
),
|
| 1244 |
+
value="%s-%s" % (gpus, gpus),
|
| 1245 |
+
interactive=True,
|
| 1246 |
+
visible=F0GPUVisible,
|
| 1247 |
+
)
|
| 1248 |
+
but2 = gr.Button(i18n("特征提取"), variant="primary")
|
| 1249 |
+
info2 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8)
|
| 1250 |
+
f0method8.change(
|
| 1251 |
+
fn=change_f0_method,
|
| 1252 |
+
inputs=[f0method8],
|
| 1253 |
+
outputs=[gpus_rmvpe],
|
| 1254 |
+
)
|
| 1255 |
+
but2.click(
|
| 1256 |
+
extract_f0_feature,
|
| 1257 |
+
[
|
| 1258 |
+
gpus6,
|
| 1259 |
+
np7,
|
| 1260 |
+
f0method8,
|
| 1261 |
+
if_f0_3,
|
| 1262 |
+
exp_dir1,
|
| 1263 |
+
version19,
|
| 1264 |
+
gpus_rmvpe,
|
| 1265 |
+
],
|
| 1266 |
+
[info2],
|
| 1267 |
+
api_name="train_extract_f0_feature",
|
| 1268 |
+
)
|
| 1269 |
+
with gr.Column():
|
| 1270 |
+
total_epoch11 = gr.Slider(
|
| 1271 |
+
minimum=2,
|
| 1272 |
+
maximum=1000,
|
| 1273 |
+
step=1,
|
| 1274 |
+
label=i18n("总训练轮数total_epoch"),
|
| 1275 |
+
value=150,
|
| 1276 |
+
interactive=True,
|
| 1277 |
+
)
|
| 1278 |
+
gpus16 = gr.Textbox(
|
| 1279 |
+
label=i18n("以-分隔输入使用的卡号, 例如 0-1-2 使用卡0和卡1和卡2"),
|
| 1280 |
+
value="0",
|
| 1281 |
+
interactive=True,
|
| 1282 |
+
visible=True
|
| 1283 |
+
)
|
| 1284 |
+
but3 = gr.Button(i18n("训练模型"), variant="primary")
|
| 1285 |
+
but4 = gr.Button(i18n("训练特征索引"), variant="primary")
|
| 1286 |
+
info3 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=10)
|
| 1287 |
+
with gr.Accordion(label=i18n("常规设置"), open=False):
|
| 1288 |
+
save_epoch10 = gr.Slider(
|
| 1289 |
+
minimum=1,
|
| 1290 |
+
maximum=50,
|
| 1291 |
+
step=1,
|
| 1292 |
+
label=i18n("保存频率save_every_epoch"),
|
| 1293 |
+
value=25,
|
| 1294 |
+
interactive=True,
|
| 1295 |
+
)
|
| 1296 |
+
batch_size12 = gr.Slider(
|
| 1297 |
+
minimum=1,
|
| 1298 |
+
maximum=40,
|
| 1299 |
+
step=1,
|
| 1300 |
+
label=i18n("每张显卡的batch_size"),
|
| 1301 |
+
value=default_batch_size,
|
| 1302 |
+
interactive=True,
|
| 1303 |
+
)
|
| 1304 |
+
if_save_latest13 = gr.Radio(
|
| 1305 |
+
label=i18n("是否仅保存最新的ckpt文件以节省硬盘空间"),
|
| 1306 |
+
choices=[i18n("是"), i18n("否")],
|
| 1307 |
+
value=i18n("是"),
|
| 1308 |
+
interactive=True,
|
| 1309 |
+
)
|
| 1310 |
+
if_cache_gpu17 = gr.Radio(
|
| 1311 |
+
label=i18n(
|
| 1312 |
+
"是否缓存所有训练集至显存. 10min以下小数据可缓存以加速训练, 大数据缓存会炸显存也加不了多少速"
|
| 1313 |
+
),
|
| 1314 |
+
choices=[i18n("是"), i18n("否")],
|
| 1315 |
+
value=i18n("否"),
|
| 1316 |
+
interactive=True,
|
| 1317 |
+
)
|
| 1318 |
+
if_save_every_weights18 = gr.Radio(
|
| 1319 |
+
label=i18n("是否在每次保存时间点将最终小模型保存至weights文件夹"),
|
| 1320 |
+
choices=[i18n("是"), i18n("否")],
|
| 1321 |
+
value=i18n("是"),
|
| 1322 |
+
interactive=True,
|
| 1323 |
+
)
|
| 1324 |
+
with gr.Row():
|
| 1325 |
+
pretrained_G14 = gr.Textbox(
|
| 1326 |
+
label=i18n("加载预训练底模G路径"),
|
| 1327 |
+
value="assets/pretrained_v2/f0G40k.pth",
|
| 1328 |
+
interactive=True,
|
| 1329 |
+
visible=False
|
| 1330 |
+
)
|
| 1331 |
+
pretrained_D15 = gr.Textbox(
|
| 1332 |
+
label=i18n("加载预训练底模D路径"),
|
| 1333 |
+
value="assets/pretrained_v2/f0D40k.pth",
|
| 1334 |
+
interactive=True,
|
| 1335 |
+
visible=False
|
| 1336 |
+
)
|
| 1337 |
+
sr2.change(
|
| 1338 |
+
change_sr2,
|
| 1339 |
+
[sr2, if_f0_3, version19],
|
| 1340 |
+
[pretrained_G14, pretrained_D15],
|
| 1341 |
+
)
|
| 1342 |
+
version19.change(
|
| 1343 |
+
change_version19,
|
| 1344 |
+
[sr2, if_f0_3, version19],
|
| 1345 |
+
[pretrained_G14, pretrained_D15, sr2],
|
| 1346 |
+
)
|
| 1347 |
+
if_f0_3.change(
|
| 1348 |
+
change_f0,
|
| 1349 |
+
[if_f0_3, sr2, version19],
|
| 1350 |
+
[f0method8, pretrained_G14, pretrained_D15],
|
| 1351 |
+
)
|
| 1352 |
+
with gr.Row():
|
| 1353 |
+
but5 = gr.Button(i18n("一键训练"), variant="primary", visible=False)
|
| 1354 |
+
but3.click(
|
| 1355 |
+
click_train,
|
| 1356 |
+
[
|
| 1357 |
+
exp_dir1,
|
| 1358 |
+
sr2,
|
| 1359 |
+
if_f0_3,
|
| 1360 |
+
spk_id5,
|
| 1361 |
+
save_epoch10,
|
| 1362 |
+
total_epoch11,
|
| 1363 |
+
batch_size12,
|
| 1364 |
+
if_save_latest13,
|
| 1365 |
+
pretrained_G14,
|
| 1366 |
+
pretrained_D15,
|
| 1367 |
+
gpus16,
|
| 1368 |
+
if_cache_gpu17,
|
| 1369 |
+
if_save_every_weights18,
|
| 1370 |
+
version19,
|
| 1371 |
+
],
|
| 1372 |
+
info3,
|
| 1373 |
+
api_name="train_start",
|
| 1374 |
+
)
|
| 1375 |
+
but4.click(train_index, [exp_dir1, version19], info3)
|
| 1376 |
+
but5.click(
|
| 1377 |
+
train1key,
|
| 1378 |
+
[
|
| 1379 |
+
exp_dir1,
|
| 1380 |
+
sr2,
|
| 1381 |
+
if_f0_3,
|
| 1382 |
+
trainset_dir4,
|
| 1383 |
+
spk_id5,
|
| 1384 |
+
np7,
|
| 1385 |
+
f0method8,
|
| 1386 |
+
save_epoch10,
|
| 1387 |
+
total_epoch11,
|
| 1388 |
+
batch_size12,
|
| 1389 |
+
if_save_latest13,
|
| 1390 |
+
pretrained_G14,
|
| 1391 |
+
pretrained_D15,
|
| 1392 |
+
gpus16,
|
| 1393 |
+
if_cache_gpu17,
|
| 1394 |
+
if_save_every_weights18,
|
| 1395 |
+
version19,
|
| 1396 |
+
gpus_rmvpe,
|
| 1397 |
+
],
|
| 1398 |
+
info3,
|
| 1399 |
+
api_name="train_start_all",
|
| 1400 |
+
)
|
| 1401 |
+
|
| 1402 |
+
if config.iscolab:
|
| 1403 |
+
app.queue(concurrency_count=511, max_size=1022).launch(share=True)
|
| 1404 |
+
else:
|
| 1405 |
+
app.queue(concurrency_count=511, max_size=1022).launch(
|
| 1406 |
+
server_name="0.0.0.0",
|
| 1407 |
+
inbrowser=not config.noautoopen,
|
| 1408 |
+
server_port=config.listen_port,
|
| 1409 |
+
quiet=True,
|
| 1410 |
+
)
|
LICENSE
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
MIT License
|
| 2 |
+
|
| 3 |
+
Copyright (c) 2023 liujing04
|
| 4 |
+
Copyright (c) 2023 源文雨
|
| 5 |
+
Copyright (c) 2023 Ftps
|
| 6 |
+
|
| 7 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
| 8 |
+
of this software and associated documentation files (the "Software"), to deal
|
| 9 |
+
in the Software without restriction, including without limitation the rights
|
| 10 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
| 11 |
+
copies of the Software, and to permit persons to whom the Software is
|
| 12 |
+
furnished to do so, subject to the following conditions:
|
| 13 |
+
|
| 14 |
+
The above copyright notice and this permission notice shall be included in all
|
| 15 |
+
copies or substantial portions of the Software.
|
| 16 |
+
|
| 17 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
| 18 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
| 19 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
| 20 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
| 21 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
| 22 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
| 23 |
+
SOFTWARE.
|
MIT协议暨相关引用库协议
ADDED
|
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
本软件及其相关代码以MIT协议开源,作者不对软件具备任何控制力,使用软件者、传播软件导出的声音者自负全责。
|
| 2 |
+
如不认可该条款,则不能使用或引用软件包内任何代码和文件。
|
| 3 |
+
|
| 4 |
+
特此授予任何获得本软件和相关文档文件(以下简称“软件”)副本的人免费使用、复制、修改、合并、出版、分发、再授权和/或销售本软件的权利,以及授予本软件所提供的人使用本软件的权利,但须符合以下条件:
|
| 5 |
+
上述版权声明和本许可声明应包含在软件的所有副本或实质部分中。
|
| 6 |
+
软件是“按原样”提供的,没有任何明示或暗示的保证,包括但不限于适销性、适用于特定目的和不侵权的保证。在任何情况下,作者或版权持有人均不承担因软件或软件的使用或其他交易而产生、产生或与之相关的任何索赔、损害赔偿或其他责任,无论是在合同诉讼、侵权诉讼还是其他诉讼中。
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
The LICENCEs for related libraries are as follows.
|
| 10 |
+
相关引用库协议如下:
|
| 11 |
+
|
| 12 |
+
ContentVec
|
| 13 |
+
https://github.com/auspicious3000/contentvec/blob/main/LICENSE
|
| 14 |
+
MIT License
|
| 15 |
+
|
| 16 |
+
VITS
|
| 17 |
+
https://github.com/jaywalnut310/vits/blob/main/LICENSE
|
| 18 |
+
MIT License
|
| 19 |
+
|
| 20 |
+
HIFIGAN
|
| 21 |
+
https://github.com/jik876/hifi-gan/blob/master/LICENSE
|
| 22 |
+
MIT License
|
| 23 |
+
|
| 24 |
+
gradio
|
| 25 |
+
https://github.com/gradio-app/gradio/blob/main/LICENSE
|
| 26 |
+
Apache License 2.0
|
| 27 |
+
|
| 28 |
+
ffmpeg
|
| 29 |
+
https://github.com/FFmpeg/FFmpeg/blob/master/COPYING.LGPLv3
|
| 30 |
+
https://github.com/BtbN/FFmpeg-Builds/releases/download/autobuild-2021-02-28-12-32/ffmpeg-n4.3.2-160-gfbb9368226-win64-lgpl-4.3.zip
|
| 31 |
+
LPGLv3 License
|
| 32 |
+
MIT License
|
| 33 |
+
|
| 34 |
+
ultimatevocalremovergui
|
| 35 |
+
https://github.com/Anjok07/ultimatevocalremovergui/blob/master/LICENSE
|
| 36 |
+
https://github.com/yang123qwe/vocal_separation_by_uvr5
|
| 37 |
+
MIT License
|
| 38 |
+
|
| 39 |
+
audio-slicer
|
| 40 |
+
https://github.com/openvpi/audio-slicer/blob/main/LICENSE
|
| 41 |
+
MIT License
|
| 42 |
+
|
| 43 |
+
PySimpleGUI
|
| 44 |
+
https://github.com/PySimpleGUI/PySimpleGUI/blob/master/license.txt
|
| 45 |
+
LPGLv3 License
|
README.md
CHANGED
|
@@ -1,12 +1,38 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
|
| 4 |
-
colorFrom: green
|
| 5 |
-
colorTo: yellow
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version: 3.
|
| 8 |
-
app_file: app.py
|
| 9 |
-
pinned: false
|
| 10 |
---
|
|
|
|
| 11 |
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
title: project-main
|
| 3 |
+
app_file: infer-web.py
|
|
|
|
|
|
|
| 4 |
sdk: gradio
|
| 5 |
+
sdk_version: 3.43.2
|
|
|
|
|
|
|
| 6 |
---
|
| 7 |
+
[](https://colab.research.google.com/drive/1r4IRL0UA7JEoZ0ZK8PKfMyTIBHKpyhcw)
|
| 8 |
|
| 9 |
+
# Local Installation
|
| 10 |
+
If you already have RVC installed, then just download GUI.py and drop it in the root folder!
|
| 11 |
+
If you need to install RVC, I recommend you check the [original repo](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI)
|
| 12 |
+
Or read this at least.
|
| 13 |
+
|
| 14 |
+
I recommend you use a virtual environment
|
| 15 |
+
|
| 16 |
+
```bash
|
| 17 |
+
python -m venv RVC
|
| 18 |
+
cd RVC
|
| 19 |
+
git clone https://github.com/777gt/-EVC-
|
| 20 |
+
Scripts/activate.bat
|
| 21 |
+
pip install torch torchvision torchaudio
|
| 22 |
+
pip install -r "-EVC-/requirements.txt"
|
| 23 |
+
```
|
| 24 |
+
If you're on Windows, like me, and don't have an NVIDA graphics card, install the requirements from a different .txt:
|
| 25 |
+
```bash
|
| 26 |
+
pip install -r "-EVC-/requirements-dml.txt"
|
| 27 |
+
```
|
| 28 |
+
Also, do not forget to download the necessary models. EasyGUI uses RVC 2 40k models.
|
| 29 |
+
|
| 30 |
+
```bash
|
| 31 |
+
wget https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/rmvpe.pt -O ./assets/rmvpe/rmvpe.pt
|
| 32 |
+
wget https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/rmvpe.onnx -O ./assets/rmvpe/rmvpe.onnx
|
| 33 |
+
wget https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/hubert_base.pt -O ./assets/hubert/hubert_base.pt
|
| 34 |
+
wget https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained_v2/D40k.pth -O ./assets/pretrained_v2/D40k.pth
|
| 35 |
+
wget https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained_v2/G40k.pth -O ./assets/pretrained_v2/G40k.pth
|
| 36 |
+
wget https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained_v2/f0D40k.pth -O ./assets/pretrained_v2/f0D40k.pth
|
| 37 |
+
wget https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained_v2/f0G40k.pth -O ./assets/pretrained_v2/f0G40k.pth
|
| 38 |
+
```
|
Retrieval_based_Voice_Conversion_WebUI.ipynb
ADDED
|
@@ -0,0 +1,403 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"attachments": {},
|
| 5 |
+
"cell_type": "markdown",
|
| 6 |
+
"metadata": {},
|
| 7 |
+
"source": [
|
| 8 |
+
"# [Retrieval-based-Voice-Conversion-WebUI](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI) Training notebook"
|
| 9 |
+
]
|
| 10 |
+
},
|
| 11 |
+
{
|
| 12 |
+
"attachments": {},
|
| 13 |
+
"cell_type": "markdown",
|
| 14 |
+
"metadata": {
|
| 15 |
+
"id": "ZFFCx5J80SGa"
|
| 16 |
+
},
|
| 17 |
+
"source": [
|
| 18 |
+
"[](https://colab.research.google.com/github/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/blob/main/Retrieval_based_Voice_Conversion_WebUI.ipynb)"
|
| 19 |
+
]
|
| 20 |
+
},
|
| 21 |
+
{
|
| 22 |
+
"cell_type": "code",
|
| 23 |
+
"execution_count": null,
|
| 24 |
+
"metadata": {
|
| 25 |
+
"id": "GmFP6bN9dvOq"
|
| 26 |
+
},
|
| 27 |
+
"outputs": [],
|
| 28 |
+
"source": [
|
| 29 |
+
"# @title 查看显卡\n",
|
| 30 |
+
"!nvidia-smi"
|
| 31 |
+
]
|
| 32 |
+
},
|
| 33 |
+
{
|
| 34 |
+
"cell_type": "code",
|
| 35 |
+
"execution_count": null,
|
| 36 |
+
"metadata": {
|
| 37 |
+
"id": "jwu07JgqoFON"
|
| 38 |
+
},
|
| 39 |
+
"outputs": [],
|
| 40 |
+
"source": [
|
| 41 |
+
"# @title 挂载谷歌云盘\n",
|
| 42 |
+
"\n",
|
| 43 |
+
"from google.colab import drive\n",
|
| 44 |
+
"\n",
|
| 45 |
+
"drive.mount(\"/content/drive\")"
|
| 46 |
+
]
|
| 47 |
+
},
|
| 48 |
+
{
|
| 49 |
+
"cell_type": "code",
|
| 50 |
+
"execution_count": null,
|
| 51 |
+
"metadata": {
|
| 52 |
+
"id": "wjddIFr1oS3W"
|
| 53 |
+
},
|
| 54 |
+
"outputs": [],
|
| 55 |
+
"source": [
|
| 56 |
+
"# @title 安装依赖\n",
|
| 57 |
+
"!apt-get -y install build-essential python3-dev ffmpeg\n",
|
| 58 |
+
"!pip3 install --upgrade setuptools wheel\n",
|
| 59 |
+
"!pip3 install --upgrade pip\n",
|
| 60 |
+
"!pip3 install faiss-cpu==1.7.2 fairseq gradio==3.14.0 ffmpeg ffmpeg-python praat-parselmouth pyworld numpy==1.23.5 numba==0.56.4 librosa==0.9.2"
|
| 61 |
+
]
|
| 62 |
+
},
|
| 63 |
+
{
|
| 64 |
+
"cell_type": "code",
|
| 65 |
+
"execution_count": null,
|
| 66 |
+
"metadata": {
|
| 67 |
+
"id": "ge_97mfpgqTm"
|
| 68 |
+
},
|
| 69 |
+
"outputs": [],
|
| 70 |
+
"source": [
|
| 71 |
+
"# @title 克隆仓库\n",
|
| 72 |
+
"\n",
|
| 73 |
+
"!git clone --depth=1 -b stable https://github.com/fumiama/Retrieval-based-Voice-Conversion-WebUI\n",
|
| 74 |
+
"%cd /content/Retrieval-based-Voice-Conversion-WebUI\n",
|
| 75 |
+
"!mkdir -p pretrained uvr5_weights"
|
| 76 |
+
]
|
| 77 |
+
},
|
| 78 |
+
{
|
| 79 |
+
"cell_type": "code",
|
| 80 |
+
"execution_count": null,
|
| 81 |
+
"metadata": {
|
| 82 |
+
"id": "BLDEZADkvlw1"
|
| 83 |
+
},
|
| 84 |
+
"outputs": [],
|
| 85 |
+
"source": [
|
| 86 |
+
"# @title 更新仓库(一般无需执行)\n",
|
| 87 |
+
"!git pull"
|
| 88 |
+
]
|
| 89 |
+
},
|
| 90 |
+
{
|
| 91 |
+
"cell_type": "code",
|
| 92 |
+
"execution_count": null,
|
| 93 |
+
"metadata": {
|
| 94 |
+
"id": "pqE0PrnuRqI2"
|
| 95 |
+
},
|
| 96 |
+
"outputs": [],
|
| 97 |
+
"source": [
|
| 98 |
+
"# @title 安装aria2\n",
|
| 99 |
+
"!apt -y install -qq aria2"
|
| 100 |
+
]
|
| 101 |
+
},
|
| 102 |
+
{
|
| 103 |
+
"cell_type": "code",
|
| 104 |
+
"execution_count": null,
|
| 105 |
+
"metadata": {
|
| 106 |
+
"id": "UG3XpUwEomUz"
|
| 107 |
+
},
|
| 108 |
+
"outputs": [],
|
| 109 |
+
"source": [
|
| 110 |
+
"# @title 下载底模\n",
|
| 111 |
+
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/D32k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o D32k.pth\n",
|
| 112 |
+
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/D40k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o D40k.pth\n",
|
| 113 |
+
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/D48k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o D48k.pth\n",
|
| 114 |
+
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/G32k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o G32k.pth\n",
|
| 115 |
+
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/G40k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o G40k.pth\n",
|
| 116 |
+
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/G48k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o G48k.pth\n",
|
| 117 |
+
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/f0D32k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o f0D32k.pth\n",
|
| 118 |
+
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/f0D40k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o f0D40k.pth\n",
|
| 119 |
+
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/f0D48k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o f0D48k.pth\n",
|
| 120 |
+
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/f0G32k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o f0G32k.pth\n",
|
| 121 |
+
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/f0G40k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o f0G40k.pth\n",
|
| 122 |
+
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/f0G48k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o f0G48k.pth"
|
| 123 |
+
]
|
| 124 |
+
},
|
| 125 |
+
{
|
| 126 |
+
"cell_type": "code",
|
| 127 |
+
"execution_count": null,
|
| 128 |
+
"metadata": {
|
| 129 |
+
"id": "HugjmZqZRuiF"
|
| 130 |
+
},
|
| 131 |
+
"outputs": [],
|
| 132 |
+
"source": [
|
| 133 |
+
"# @title 下载人声分离模型\n",
|
| 134 |
+
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/uvr5_weights/HP2-人声vocals+非人声instrumentals.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/uvr5_weights -o HP2-人声vocals+非人声instrumentals.pth\n",
|
| 135 |
+
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/uvr5_weights/HP5-主旋律人声vocals+其他instrumentals.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/uvr5_weights -o HP5-主旋律人声vocals+其他instrumentals.pth"
|
| 136 |
+
]
|
| 137 |
+
},
|
| 138 |
+
{
|
| 139 |
+
"cell_type": "code",
|
| 140 |
+
"execution_count": null,
|
| 141 |
+
"metadata": {
|
| 142 |
+
"id": "2RCaT9FTR0ej"
|
| 143 |
+
},
|
| 144 |
+
"outputs": [],
|
| 145 |
+
"source": [
|
| 146 |
+
"# @title 下载hubert_base\n",
|
| 147 |
+
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/hubert_base.pt -d /content/Retrieval-based-Voice-Conversion-WebUI -o hubert_base.pt"
|
| 148 |
+
]
|
| 149 |
+
},
|
| 150 |
+
{
|
| 151 |
+
"cell_type": "code",
|
| 152 |
+
"execution_count": null,
|
| 153 |
+
"metadata": {},
|
| 154 |
+
"outputs": [],
|
| 155 |
+
"source": [
|
| 156 |
+
"# @title #下载rmvpe模型\n",
|
| 157 |
+
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/rmvpe.pt -d /content/Retrieval-based-Voice-Conversion-WebUI -o rmvpe.pt"
|
| 158 |
+
]
|
| 159 |
+
},
|
| 160 |
+
{
|
| 161 |
+
"cell_type": "code",
|
| 162 |
+
"execution_count": null,
|
| 163 |
+
"metadata": {
|
| 164 |
+
"id": "Mwk7Q0Loqzjx"
|
| 165 |
+
},
|
| 166 |
+
"outputs": [],
|
| 167 |
+
"source": [
|
| 168 |
+
"# @title 从谷歌云盘加载打包好的数据集到/content/dataset\n",
|
| 169 |
+
"\n",
|
| 170 |
+
"# @markdown 数据集位置\n",
|
| 171 |
+
"DATASET = (\n",
|
| 172 |
+
" \"/content/drive/MyDrive/dataset/lulu20230327_32k.zip\" # @param {type:\"string\"}\n",
|
| 173 |
+
")\n",
|
| 174 |
+
"\n",
|
| 175 |
+
"!mkdir -p /content/dataset\n",
|
| 176 |
+
"!unzip -d /content/dataset -B {DATASET}"
|
| 177 |
+
]
|
| 178 |
+
},
|
| 179 |
+
{
|
| 180 |
+
"cell_type": "code",
|
| 181 |
+
"execution_count": null,
|
| 182 |
+
"metadata": {
|
| 183 |
+
"id": "PDlFxWHWEynD"
|
| 184 |
+
},
|
| 185 |
+
"outputs": [],
|
| 186 |
+
"source": [
|
| 187 |
+
"# @title 重命名数据集中的重名文件\n",
|
| 188 |
+
"!ls -a /content/dataset/\n",
|
| 189 |
+
"!rename 's/(\\w+)\\.(\\w+)~(\\d*)/$1_$3.$2/' /content/dataset/*.*~*"
|
| 190 |
+
]
|
| 191 |
+
},
|
| 192 |
+
{
|
| 193 |
+
"cell_type": "code",
|
| 194 |
+
"execution_count": null,
|
| 195 |
+
"metadata": {
|
| 196 |
+
"id": "7vh6vphDwO0b"
|
| 197 |
+
},
|
| 198 |
+
"outputs": [],
|
| 199 |
+
"source": [
|
| 200 |
+
"# @title 启动web\n",
|
| 201 |
+
"%cd /content/Retrieval-based-Voice-Conversion-WebUI\n",
|
| 202 |
+
"# %load_ext tensorboard\n",
|
| 203 |
+
"# %tensorboard --logdir /content/Retrieval-based-Voice-Conversion-WebUI/logs\n",
|
| 204 |
+
"!python3 infer-web.py --colab --pycmd python3"
|
| 205 |
+
]
|
| 206 |
+
},
|
| 207 |
+
{
|
| 208 |
+
"cell_type": "code",
|
| 209 |
+
"execution_count": null,
|
| 210 |
+
"metadata": {
|
| 211 |
+
"id": "FgJuNeAwx5Y_"
|
| 212 |
+
},
|
| 213 |
+
"outputs": [],
|
| 214 |
+
"source": [
|
| 215 |
+
"# @title 手动将训练后的模型文件备份到谷歌云盘\n",
|
| 216 |
+
"# @markdown 需要自己查看logs文件夹下模型的文件名,手动修改下方命令末尾的文件名\n",
|
| 217 |
+
"\n",
|
| 218 |
+
"# @markdown 模型名\n",
|
| 219 |
+
"MODELNAME = \"lulu\" # @param {type:\"string\"}\n",
|
| 220 |
+
"# @markdown 模型epoch\n",
|
| 221 |
+
"MODELEPOCH = 9600 # @param {type:\"integer\"}\n",
|
| 222 |
+
"\n",
|
| 223 |
+
"!cp /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/G_{MODELEPOCH}.pth /content/drive/MyDrive/{MODELNAME}_D_{MODELEPOCH}.pth\n",
|
| 224 |
+
"!cp /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/D_{MODELEPOCH}.pth /content/drive/MyDrive/{MODELNAME}_G_{MODELEPOCH}.pth\n",
|
| 225 |
+
"!cp /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/added_*.index /content/drive/MyDrive/\n",
|
| 226 |
+
"!cp /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/total_*.npy /content/drive/MyDrive/\n",
|
| 227 |
+
"\n",
|
| 228 |
+
"!cp /content/Retrieval-based-Voice-Conversion-WebUI/weights/{MODELNAME}.pth /content/drive/MyDrive/{MODELNAME}{MODELEPOCH}.pth"
|
| 229 |
+
]
|
| 230 |
+
},
|
| 231 |
+
{
|
| 232 |
+
"cell_type": "code",
|
| 233 |
+
"execution_count": null,
|
| 234 |
+
"metadata": {
|
| 235 |
+
"id": "OVQoLQJXS7WX"
|
| 236 |
+
},
|
| 237 |
+
"outputs": [],
|
| 238 |
+
"source": [
|
| 239 |
+
"# @title 从谷歌云盘恢复pth\n",
|
| 240 |
+
"# @markdown 需要自己查看logs文件夹下模型的文件名,手动修改下方命令末尾的文件名\n",
|
| 241 |
+
"\n",
|
| 242 |
+
"# @markdown 模型名\n",
|
| 243 |
+
"MODELNAME = \"lulu\" # @param {type:\"string\"}\n",
|
| 244 |
+
"# @markdown 模型epoch\n",
|
| 245 |
+
"MODELEPOCH = 7500 # @param {type:\"integer\"}\n",
|
| 246 |
+
"\n",
|
| 247 |
+
"!mkdir -p /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}\n",
|
| 248 |
+
"\n",
|
| 249 |
+
"!cp /content/drive/MyDrive/{MODELNAME}_D_{MODELEPOCH}.pth /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/G_{MODELEPOCH}.pth\n",
|
| 250 |
+
"!cp /content/drive/MyDrive/{MODELNAME}_G_{MODELEPOCH}.pth /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/D_{MODELEPOCH}.pth\n",
|
| 251 |
+
"!cp /content/drive/MyDrive/*.index /content/\n",
|
| 252 |
+
"!cp /content/drive/MyDrive/*.npy /content/\n",
|
| 253 |
+
"!cp /content/drive/MyDrive/{MODELNAME}{MODELEPOCH}.pth /content/Retrieval-based-Voice-Conversion-WebUI/weights/{MODELNAME}.pth"
|
| 254 |
+
]
|
| 255 |
+
},
|
| 256 |
+
{
|
| 257 |
+
"cell_type": "code",
|
| 258 |
+
"execution_count": null,
|
| 259 |
+
"metadata": {
|
| 260 |
+
"id": "ZKAyuKb9J6dz"
|
| 261 |
+
},
|
| 262 |
+
"outputs": [],
|
| 263 |
+
"source": [
|
| 264 |
+
"# @title 手动预处理(不推荐)\n",
|
| 265 |
+
"# @markdown 模型名\n",
|
| 266 |
+
"MODELNAME = \"lulu\" # @param {type:\"string\"}\n",
|
| 267 |
+
"# @markdown 采样率\n",
|
| 268 |
+
"BITRATE = 48000 # @param {type:\"integer\"}\n",
|
| 269 |
+
"# @markdown 使用的进程数\n",
|
| 270 |
+
"THREADCOUNT = 8 # @param {type:\"integer\"}\n",
|
| 271 |
+
"\n",
|
| 272 |
+
"!python3 trainset_preprocess_pipeline_print.py /content/dataset {BITRATE} {THREADCOUNT} logs/{MODELNAME} True"
|
| 273 |
+
]
|
| 274 |
+
},
|
| 275 |
+
{
|
| 276 |
+
"cell_type": "code",
|
| 277 |
+
"execution_count": null,
|
| 278 |
+
"metadata": {
|
| 279 |
+
"id": "CrxJqzAUKmPJ"
|
| 280 |
+
},
|
| 281 |
+
"outputs": [],
|
| 282 |
+
"source": [
|
| 283 |
+
"# @title 手动提取特征(不推荐)\n",
|
| 284 |
+
"# @markdown 模型名\n",
|
| 285 |
+
"MODELNAME = \"lulu\" # @param {type:\"string\"}\n",
|
| 286 |
+
"# @markdown 使用的进程数\n",
|
| 287 |
+
"THREADCOUNT = 8 # @param {type:\"integer\"}\n",
|
| 288 |
+
"# @markdown 音高提取算法\n",
|
| 289 |
+
"ALGO = \"harvest\" # @param {type:\"string\"}\n",
|
| 290 |
+
"\n",
|
| 291 |
+
"!python3 extract_f0_print.py logs/{MODELNAME} {THREADCOUNT} {ALGO}\n",
|
| 292 |
+
"\n",
|
| 293 |
+
"!python3 extract_feature_print.py cpu 1 0 0 logs/{MODELNAME}"
|
| 294 |
+
]
|
| 295 |
+
},
|
| 296 |
+
{
|
| 297 |
+
"cell_type": "code",
|
| 298 |
+
"execution_count": null,
|
| 299 |
+
"metadata": {
|
| 300 |
+
"id": "IMLPLKOaKj58"
|
| 301 |
+
},
|
| 302 |
+
"outputs": [],
|
| 303 |
+
"source": [
|
| 304 |
+
"# @title 手动训练(不推荐)\n",
|
| 305 |
+
"# @markdown 模型名\n",
|
| 306 |
+
"MODELNAME = \"lulu\" # @param {type:\"string\"}\n",
|
| 307 |
+
"# @markdown 使用的GPU\n",
|
| 308 |
+
"USEGPU = \"0\" # @param {type:\"string\"}\n",
|
| 309 |
+
"# @markdown 批大小\n",
|
| 310 |
+
"BATCHSIZE = 32 # @param {type:\"integer\"}\n",
|
| 311 |
+
"# @markdown 停止的epoch\n",
|
| 312 |
+
"MODELEPOCH = 3200 # @param {type:\"integer\"}\n",
|
| 313 |
+
"# @markdown 保存epoch间隔\n",
|
| 314 |
+
"EPOCHSAVE = 100 # @param {type:\"integer\"}\n",
|
| 315 |
+
"# @markdown 采样率\n",
|
| 316 |
+
"MODELSAMPLE = \"48k\" # @param {type:\"string\"}\n",
|
| 317 |
+
"# @markdown 是否缓存训练集\n",
|
| 318 |
+
"CACHEDATA = 1 # @param {type:\"integer\"}\n",
|
| 319 |
+
"# @markdown 是否仅保存最新的ckpt文件\n",
|
| 320 |
+
"ONLYLATEST = 0 # @param {type:\"integer\"}\n",
|
| 321 |
+
"\n",
|
| 322 |
+
"!python3 train_nsf_sim_cache_sid_load_pretrain.py -e lulu -sr {MODELSAMPLE} -f0 1 -bs {BATCHSIZE} -g {USEGPU} -te {MODELEPOCH} -se {EPOCHSAVE} -pg pretrained/f0G{MODELSAMPLE}.pth -pd pretrained/f0D{MODELSAMPLE}.pth -l {ONLYLATEST} -c {CACHEDATA}"
|
| 323 |
+
]
|
| 324 |
+
},
|
| 325 |
+
{
|
| 326 |
+
"cell_type": "code",
|
| 327 |
+
"execution_count": null,
|
| 328 |
+
"metadata": {
|
| 329 |
+
"id": "haYA81hySuDl"
|
| 330 |
+
},
|
| 331 |
+
"outputs": [],
|
| 332 |
+
"source": [
|
| 333 |
+
"# @title 删除其它pth,只留选中的(慎点,仔细看代码)\n",
|
| 334 |
+
"# @markdown 模型名\n",
|
| 335 |
+
"MODELNAME = \"lulu\" # @param {type:\"string\"}\n",
|
| 336 |
+
"# @markdown 选中模型epoch\n",
|
| 337 |
+
"MODELEPOCH = 9600 # @param {type:\"integer\"}\n",
|
| 338 |
+
"\n",
|
| 339 |
+
"!echo \"备份选中的模型。。。\"\n",
|
| 340 |
+
"!cp /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/G_{MODELEPOCH}.pth /content/{MODELNAME}_D_{MODELEPOCH}.pth\n",
|
| 341 |
+
"!cp /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/D_{MODELEPOCH}.pth /content/{MODELNAME}_G_{MODELEPOCH}.pth\n",
|
| 342 |
+
"\n",
|
| 343 |
+
"!echo \"正在删除。。。\"\n",
|
| 344 |
+
"!ls /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}\n",
|
| 345 |
+
"!rm /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/*.pth\n",
|
| 346 |
+
"\n",
|
| 347 |
+
"!echo \"恢复选中的模型。。。\"\n",
|
| 348 |
+
"!mv /content/{MODELNAME}_D_{MODELEPOCH}.pth /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/G_{MODELEPOCH}.pth\n",
|
| 349 |
+
"!mv /content/{MODELNAME}_G_{MODELEPOCH}.pth /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/D_{MODELEPOCH}.pth\n",
|
| 350 |
+
"\n",
|
| 351 |
+
"!echo \"删除完成\"\n",
|
| 352 |
+
"!ls /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}"
|
| 353 |
+
]
|
| 354 |
+
},
|
| 355 |
+
{
|
| 356 |
+
"cell_type": "code",
|
| 357 |
+
"execution_count": null,
|
| 358 |
+
"metadata": {
|
| 359 |
+
"id": "QhSiPTVPoIRh"
|
| 360 |
+
},
|
| 361 |
+
"outputs": [],
|
| 362 |
+
"source": [
|
| 363 |
+
"# @title 清除项目下所有文件,只留选中的模型(慎点,仔细看代码)\n",
|
| 364 |
+
"# @markdown 模型名\n",
|
| 365 |
+
"MODELNAME = \"lulu\" # @param {type:\"string\"}\n",
|
| 366 |
+
"# @markdown 选中模型epoch\n",
|
| 367 |
+
"MODELEPOCH = 9600 # @param {type:\"integer\"}\n",
|
| 368 |
+
"\n",
|
| 369 |
+
"!echo \"备份选中的模型。。。\"\n",
|
| 370 |
+
"!cp /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/G_{MODELEPOCH}.pth /content/{MODELNAME}_D_{MODELEPOCH}.pth\n",
|
| 371 |
+
"!cp /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/D_{MODELEPOCH}.pth /content/{MODELNAME}_G_{MODELEPOCH}.pth\n",
|
| 372 |
+
"\n",
|
| 373 |
+
"!echo \"正��删除。。。\"\n",
|
| 374 |
+
"!ls /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}\n",
|
| 375 |
+
"!rm -rf /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/*\n",
|
| 376 |
+
"\n",
|
| 377 |
+
"!echo \"恢复选中的模型。。。\"\n",
|
| 378 |
+
"!mv /content/{MODELNAME}_D_{MODELEPOCH}.pth /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/G_{MODELEPOCH}.pth\n",
|
| 379 |
+
"!mv /content/{MODELNAME}_G_{MODELEPOCH}.pth /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/D_{MODELEPOCH}.pth\n",
|
| 380 |
+
"\n",
|
| 381 |
+
"!echo \"删除完成\"\n",
|
| 382 |
+
"!ls /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}"
|
| 383 |
+
]
|
| 384 |
+
}
|
| 385 |
+
],
|
| 386 |
+
"metadata": {
|
| 387 |
+
"accelerator": "GPU",
|
| 388 |
+
"colab": {
|
| 389 |
+
"private_outputs": true,
|
| 390 |
+
"provenance": []
|
| 391 |
+
},
|
| 392 |
+
"gpuClass": "standard",
|
| 393 |
+
"kernelspec": {
|
| 394 |
+
"display_name": "Python 3",
|
| 395 |
+
"name": "python3"
|
| 396 |
+
},
|
| 397 |
+
"language_info": {
|
| 398 |
+
"name": "python"
|
| 399 |
+
}
|
| 400 |
+
},
|
| 401 |
+
"nbformat": 4,
|
| 402 |
+
"nbformat_minor": 0
|
| 403 |
+
}
|
Retrieval_based_Voice_Conversion_WebUI_v2.ipynb
ADDED
|
@@ -0,0 +1,422 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"attachments": {},
|
| 5 |
+
"cell_type": "markdown",
|
| 6 |
+
"metadata": {},
|
| 7 |
+
"source": [
|
| 8 |
+
"# [Retrieval-based-Voice-Conversion-WebUI](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI) Training notebook"
|
| 9 |
+
]
|
| 10 |
+
},
|
| 11 |
+
{
|
| 12 |
+
"attachments": {},
|
| 13 |
+
"cell_type": "markdown",
|
| 14 |
+
"metadata": {
|
| 15 |
+
"id": "ZFFCx5J80SGa"
|
| 16 |
+
},
|
| 17 |
+
"source": [
|
| 18 |
+
"[](https://colab.research.google.com/github/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/blob/main/Retrieval_based_Voice_Conversion_WebUI_v2.ipynb)"
|
| 19 |
+
]
|
| 20 |
+
},
|
| 21 |
+
{
|
| 22 |
+
"cell_type": "code",
|
| 23 |
+
"execution_count": null,
|
| 24 |
+
"metadata": {
|
| 25 |
+
"id": "GmFP6bN9dvOq"
|
| 26 |
+
},
|
| 27 |
+
"outputs": [],
|
| 28 |
+
"source": [
|
| 29 |
+
"# @title #查看显卡\n",
|
| 30 |
+
"!nvidia-smi"
|
| 31 |
+
]
|
| 32 |
+
},
|
| 33 |
+
{
|
| 34 |
+
"cell_type": "code",
|
| 35 |
+
"execution_count": null,
|
| 36 |
+
"metadata": {
|
| 37 |
+
"id": "jwu07JgqoFON"
|
| 38 |
+
},
|
| 39 |
+
"outputs": [],
|
| 40 |
+
"source": [
|
| 41 |
+
"# @title 挂载谷歌云盘\n",
|
| 42 |
+
"\n",
|
| 43 |
+
"from google.colab import drive\n",
|
| 44 |
+
"\n",
|
| 45 |
+
"drive.mount(\"/content/drive\")"
|
| 46 |
+
]
|
| 47 |
+
},
|
| 48 |
+
{
|
| 49 |
+
"cell_type": "code",
|
| 50 |
+
"execution_count": null,
|
| 51 |
+
"metadata": {
|
| 52 |
+
"id": "wjddIFr1oS3W"
|
| 53 |
+
},
|
| 54 |
+
"outputs": [],
|
| 55 |
+
"source": [
|
| 56 |
+
"# @title #安装依赖\n",
|
| 57 |
+
"!apt-get -y install build-essential python3-dev ffmpeg\n",
|
| 58 |
+
"!pip3 install --upgrade setuptools wheel\n",
|
| 59 |
+
"!pip3 install --upgrade pip\n",
|
| 60 |
+
"!pip3 install faiss-cpu==1.7.2 fairseq gradio==3.14.0 ffmpeg ffmpeg-python praat-parselmouth pyworld numpy==1.23.5 numba==0.56.4 librosa==0.9.2"
|
| 61 |
+
]
|
| 62 |
+
},
|
| 63 |
+
{
|
| 64 |
+
"cell_type": "code",
|
| 65 |
+
"execution_count": null,
|
| 66 |
+
"metadata": {
|
| 67 |
+
"id": "ge_97mfpgqTm"
|
| 68 |
+
},
|
| 69 |
+
"outputs": [],
|
| 70 |
+
"source": [
|
| 71 |
+
"# @title #克隆仓库\n",
|
| 72 |
+
"\n",
|
| 73 |
+
"!mkdir Retrieval-based-Voice-Conversion-WebUI\n",
|
| 74 |
+
"%cd /content/Retrieval-based-Voice-Conversion-WebUI\n",
|
| 75 |
+
"!git init\n",
|
| 76 |
+
"!git remote add origin https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI.git\n",
|
| 77 |
+
"!git fetch origin cfd984812804ddc9247d65b14c82cd32e56c1133 --depth=1\n",
|
| 78 |
+
"!git reset --hard FETCH_HEAD"
|
| 79 |
+
]
|
| 80 |
+
},
|
| 81 |
+
{
|
| 82 |
+
"cell_type": "code",
|
| 83 |
+
"execution_count": null,
|
| 84 |
+
"metadata": {
|
| 85 |
+
"id": "BLDEZADkvlw1"
|
| 86 |
+
},
|
| 87 |
+
"outputs": [],
|
| 88 |
+
"source": [
|
| 89 |
+
"# @title #更新仓库(一般无需执行)\n",
|
| 90 |
+
"!git pull"
|
| 91 |
+
]
|
| 92 |
+
},
|
| 93 |
+
{
|
| 94 |
+
"cell_type": "code",
|
| 95 |
+
"execution_count": null,
|
| 96 |
+
"metadata": {
|
| 97 |
+
"id": "pqE0PrnuRqI2"
|
| 98 |
+
},
|
| 99 |
+
"outputs": [],
|
| 100 |
+
"source": [
|
| 101 |
+
"# @title #安装aria2\n",
|
| 102 |
+
"!apt -y install -qq aria2"
|
| 103 |
+
]
|
| 104 |
+
},
|
| 105 |
+
{
|
| 106 |
+
"cell_type": "code",
|
| 107 |
+
"execution_count": null,
|
| 108 |
+
"metadata": {
|
| 109 |
+
"id": "UG3XpUwEomUz"
|
| 110 |
+
},
|
| 111 |
+
"outputs": [],
|
| 112 |
+
"source": [
|
| 113 |
+
"# @title 下载底模\n",
|
| 114 |
+
"\n",
|
| 115 |
+
"# v1\n",
|
| 116 |
+
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/D32k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o D32k.pth\n",
|
| 117 |
+
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/D40k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o D40k.pth\n",
|
| 118 |
+
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/D48k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o D48k.pth\n",
|
| 119 |
+
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/G32k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o G32k.pth\n",
|
| 120 |
+
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/G40k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o G40k.pth\n",
|
| 121 |
+
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/G48k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o G48k.pth\n",
|
| 122 |
+
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/f0D32k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o f0D32k.pth\n",
|
| 123 |
+
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/f0D40k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o f0D40k.pth\n",
|
| 124 |
+
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/f0D48k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o f0D48k.pth\n",
|
| 125 |
+
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/f0G32k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o f0G32k.pth\n",
|
| 126 |
+
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/f0G40k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o f0G40k.pth\n",
|
| 127 |
+
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/f0G48k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o f0G48k.pth\n",
|
| 128 |
+
"\n",
|
| 129 |
+
"# v2\n",
|
| 130 |
+
"# !aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained_v2/D32k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained_v2 -o D32k.pth\n",
|
| 131 |
+
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained_v2/D40k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained_v2 -o D40k.pth\n",
|
| 132 |
+
"# !aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained_v2/D48k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained_v2 -o D48k.pth\n",
|
| 133 |
+
"# !aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained_v2/G32k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained_v2 -o G32k.pth\n",
|
| 134 |
+
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained_v2/G40k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained_v2 -o G40k.pth\n",
|
| 135 |
+
"# !aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained_v2/G48k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained_v2 -o G48k.pth\n",
|
| 136 |
+
"# !aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained_v2/f0D32k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained_v2 -o f0D32k.pth\n",
|
| 137 |
+
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained_v2/f0D40k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained_v2 -o f0D40k.pth\n",
|
| 138 |
+
"# !aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained_v2/f0D48k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained_v2 -o f0D48k.pth\n",
|
| 139 |
+
"# !aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained_v2/f0G32k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained_v2 -o f0G32k.pth\n",
|
| 140 |
+
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained_v2/f0G40k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained_v2 -o f0G40k.pth\n",
|
| 141 |
+
"# !aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained_v2/f0G48k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained_v2 -o f0G48k.pth"
|
| 142 |
+
]
|
| 143 |
+
},
|
| 144 |
+
{
|
| 145 |
+
"cell_type": "code",
|
| 146 |
+
"execution_count": null,
|
| 147 |
+
"metadata": {
|
| 148 |
+
"id": "HugjmZqZRuiF"
|
| 149 |
+
},
|
| 150 |
+
"outputs": [],
|
| 151 |
+
"source": [
|
| 152 |
+
"# @title #下载人声分离模型\n",
|
| 153 |
+
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/uvr5_weights/HP2-人声vocals+非人声instrumentals.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/uvr5_weights -o HP2-人声vocals+非人声instrumentals.pth\n",
|
| 154 |
+
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/uvr5_weights/HP5-主旋律人声vocals+其他instrumentals.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/uvr5_weights -o HP5-主旋律人声vocals+其他instrumentals.pth"
|
| 155 |
+
]
|
| 156 |
+
},
|
| 157 |
+
{
|
| 158 |
+
"cell_type": "code",
|
| 159 |
+
"execution_count": null,
|
| 160 |
+
"metadata": {
|
| 161 |
+
"id": "2RCaT9FTR0ej"
|
| 162 |
+
},
|
| 163 |
+
"outputs": [],
|
| 164 |
+
"source": [
|
| 165 |
+
"# @title #下载hubert_base\n",
|
| 166 |
+
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/hubert_base.pt -d /content/Retrieval-based-Voice-Conversion-WebUI -o hubert_base.pt"
|
| 167 |
+
]
|
| 168 |
+
},
|
| 169 |
+
{
|
| 170 |
+
"cell_type": "code",
|
| 171 |
+
"execution_count": null,
|
| 172 |
+
"metadata": {},
|
| 173 |
+
"outputs": [],
|
| 174 |
+
"source": [
|
| 175 |
+
"# @title #下载rmvpe模型\n",
|
| 176 |
+
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/rmvpe.pt -d /content/Retrieval-based-Voice-Conversion-WebUI -o rmvpe.pt"
|
| 177 |
+
]
|
| 178 |
+
},
|
| 179 |
+
{
|
| 180 |
+
"cell_type": "code",
|
| 181 |
+
"execution_count": null,
|
| 182 |
+
"metadata": {
|
| 183 |
+
"id": "Mwk7Q0Loqzjx"
|
| 184 |
+
},
|
| 185 |
+
"outputs": [],
|
| 186 |
+
"source": [
|
| 187 |
+
"# @title #从谷歌云盘加载打包好的数据集到/content/dataset\n",
|
| 188 |
+
"\n",
|
| 189 |
+
"# @markdown 数据集位置\n",
|
| 190 |
+
"DATASET = (\n",
|
| 191 |
+
" \"/content/drive/MyDrive/dataset/lulu20230327_32k.zip\" # @param {type:\"string\"}\n",
|
| 192 |
+
")\n",
|
| 193 |
+
"\n",
|
| 194 |
+
"!mkdir -p /content/dataset\n",
|
| 195 |
+
"!unzip -d /content/dataset -B {DATASET}"
|
| 196 |
+
]
|
| 197 |
+
},
|
| 198 |
+
{
|
| 199 |
+
"cell_type": "code",
|
| 200 |
+
"execution_count": null,
|
| 201 |
+
"metadata": {
|
| 202 |
+
"id": "PDlFxWHWEynD"
|
| 203 |
+
},
|
| 204 |
+
"outputs": [],
|
| 205 |
+
"source": [
|
| 206 |
+
"# @title #重命名数据集中的重名文件\n",
|
| 207 |
+
"!ls -a /content/dataset/\n",
|
| 208 |
+
"!rename 's/(\\w+)\\.(\\w+)~(\\d*)/$1_$3.$2/' /content/dataset/*.*~*"
|
| 209 |
+
]
|
| 210 |
+
},
|
| 211 |
+
{
|
| 212 |
+
"cell_type": "code",
|
| 213 |
+
"execution_count": null,
|
| 214 |
+
"metadata": {
|
| 215 |
+
"id": "7vh6vphDwO0b"
|
| 216 |
+
},
|
| 217 |
+
"outputs": [],
|
| 218 |
+
"source": [
|
| 219 |
+
"# @title #启动webui\n",
|
| 220 |
+
"%cd /content/Retrieval-based-Voice-Conversion-WebUI\n",
|
| 221 |
+
"# %load_ext tensorboard\n",
|
| 222 |
+
"# %tensorboard --logdir /content/Retrieval-based-Voice-Conversion-WebUI/logs\n",
|
| 223 |
+
"!python3 infer-web.py --colab --pycmd python3"
|
| 224 |
+
]
|
| 225 |
+
},
|
| 226 |
+
{
|
| 227 |
+
"cell_type": "code",
|
| 228 |
+
"execution_count": null,
|
| 229 |
+
"metadata": {
|
| 230 |
+
"id": "FgJuNeAwx5Y_"
|
| 231 |
+
},
|
| 232 |
+
"outputs": [],
|
| 233 |
+
"source": [
|
| 234 |
+
"# @title #手动将训练后的模型文件备份到谷歌云盘\n",
|
| 235 |
+
"# @markdown #需要自己查看logs文件夹下模型的文件名,手动修改下方命令末尾的文件名\n",
|
| 236 |
+
"\n",
|
| 237 |
+
"# @markdown #模型名\n",
|
| 238 |
+
"MODELNAME = \"lulu\" # @param {type:\"string\"}\n",
|
| 239 |
+
"# @markdown #模型epoch\n",
|
| 240 |
+
"MODELEPOCH = 9600 # @param {type:\"integer\"}\n",
|
| 241 |
+
"\n",
|
| 242 |
+
"!cp /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/G_{MODELEPOCH}.pth /content/drive/MyDrive/{MODELNAME}_D_{MODELEPOCH}.pth\n",
|
| 243 |
+
"!cp /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/D_{MODELEPOCH}.pth /content/drive/MyDrive/{MODELNAME}_G_{MODELEPOCH}.pth\n",
|
| 244 |
+
"!cp /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/added_*.index /content/drive/MyDrive/\n",
|
| 245 |
+
"!cp /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/total_*.npy /content/drive/MyDrive/\n",
|
| 246 |
+
"\n",
|
| 247 |
+
"!cp /content/Retrieval-based-Voice-Conversion-WebUI/weights/{MODELNAME}.pth /content/drive/MyDrive/{MODELNAME}{MODELEPOCH}.pth"
|
| 248 |
+
]
|
| 249 |
+
},
|
| 250 |
+
{
|
| 251 |
+
"cell_type": "code",
|
| 252 |
+
"execution_count": null,
|
| 253 |
+
"metadata": {
|
| 254 |
+
"id": "OVQoLQJXS7WX"
|
| 255 |
+
},
|
| 256 |
+
"outputs": [],
|
| 257 |
+
"source": [
|
| 258 |
+
"# @title 从谷歌云盘恢复pth\n",
|
| 259 |
+
"# @markdown 需要自己查看logs文件夹下模型的文件名,手动修改下方命令末尾的文件名\n",
|
| 260 |
+
"\n",
|
| 261 |
+
"# @markdown 模型名\n",
|
| 262 |
+
"MODELNAME = \"lulu\" # @param {type:\"string\"}\n",
|
| 263 |
+
"# @markdown 模型epoch\n",
|
| 264 |
+
"MODELEPOCH = 7500 # @param {type:\"integer\"}\n",
|
| 265 |
+
"\n",
|
| 266 |
+
"!mkdir -p /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}\n",
|
| 267 |
+
"\n",
|
| 268 |
+
"!cp /content/drive/MyDrive/{MODELNAME}_D_{MODELEPOCH}.pth /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/G_{MODELEPOCH}.pth\n",
|
| 269 |
+
"!cp /content/drive/MyDrive/{MODELNAME}_G_{MODELEPOCH}.pth /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/D_{MODELEPOCH}.pth\n",
|
| 270 |
+
"!cp /content/drive/MyDrive/*.index /content/\n",
|
| 271 |
+
"!cp /content/drive/MyDrive/*.npy /content/\n",
|
| 272 |
+
"!cp /content/drive/MyDrive/{MODELNAME}{MODELEPOCH}.pth /content/Retrieval-based-Voice-Conversion-WebUI/weights/{MODELNAME}.pth"
|
| 273 |
+
]
|
| 274 |
+
},
|
| 275 |
+
{
|
| 276 |
+
"cell_type": "code",
|
| 277 |
+
"execution_count": null,
|
| 278 |
+
"metadata": {
|
| 279 |
+
"id": "ZKAyuKb9J6dz"
|
| 280 |
+
},
|
| 281 |
+
"outputs": [],
|
| 282 |
+
"source": [
|
| 283 |
+
"# @title 手动预处理(不推荐)\n",
|
| 284 |
+
"# @markdown 模型名\n",
|
| 285 |
+
"MODELNAME = \"lulu\" # @param {type:\"string\"}\n",
|
| 286 |
+
"# @markdown 采样率\n",
|
| 287 |
+
"BITRATE = 48000 # @param {type:\"integer\"}\n",
|
| 288 |
+
"# @markdown 使用的进程数\n",
|
| 289 |
+
"THREADCOUNT = 8 # @param {type:\"integer\"}\n",
|
| 290 |
+
"\n",
|
| 291 |
+
"!python3 trainset_preprocess_pipeline_print.py /content/dataset {BITRATE} {THREADCOUNT} logs/{MODELNAME} True"
|
| 292 |
+
]
|
| 293 |
+
},
|
| 294 |
+
{
|
| 295 |
+
"cell_type": "code",
|
| 296 |
+
"execution_count": null,
|
| 297 |
+
"metadata": {
|
| 298 |
+
"id": "CrxJqzAUKmPJ"
|
| 299 |
+
},
|
| 300 |
+
"outputs": [],
|
| 301 |
+
"source": [
|
| 302 |
+
"# @title 手动提取特征(不推荐)\n",
|
| 303 |
+
"# @markdown 模型名\n",
|
| 304 |
+
"MODELNAME = \"lulu\" # @param {type:\"string\"}\n",
|
| 305 |
+
"# @markdown 使用的进程数\n",
|
| 306 |
+
"THREADCOUNT = 8 # @param {type:\"integer\"}\n",
|
| 307 |
+
"# @markdown 音高提取算法\n",
|
| 308 |
+
"ALGO = \"harvest\" # @param {type:\"string\"}\n",
|
| 309 |
+
"\n",
|
| 310 |
+
"!python3 extract_f0_print.py logs/{MODELNAME} {THREADCOUNT} {ALGO}\n",
|
| 311 |
+
"\n",
|
| 312 |
+
"!python3 extract_feature_print.py cpu 1 0 0 logs/{MODELNAME}"
|
| 313 |
+
]
|
| 314 |
+
},
|
| 315 |
+
{
|
| 316 |
+
"cell_type": "code",
|
| 317 |
+
"execution_count": null,
|
| 318 |
+
"metadata": {
|
| 319 |
+
"id": "IMLPLKOaKj58"
|
| 320 |
+
},
|
| 321 |
+
"outputs": [],
|
| 322 |
+
"source": [
|
| 323 |
+
"# @title 手动训练(不推荐)\n",
|
| 324 |
+
"# @markdown 模型名\n",
|
| 325 |
+
"MODELNAME = \"lulu\" # @param {type:\"string\"}\n",
|
| 326 |
+
"# @markdown 使用的GPU\n",
|
| 327 |
+
"USEGPU = \"0\" # @param {type:\"string\"}\n",
|
| 328 |
+
"# @markdown 批大小\n",
|
| 329 |
+
"BATCHSIZE = 32 # @param {type:\"integer\"}\n",
|
| 330 |
+
"# @markdown 停止的epoch\n",
|
| 331 |
+
"MODELEPOCH = 3200 # @param {type:\"integer\"}\n",
|
| 332 |
+
"# @markdown 保存epoch间隔\n",
|
| 333 |
+
"EPOCHSAVE = 100 # @param {type:\"integer\"}\n",
|
| 334 |
+
"# @markdown 采样率\n",
|
| 335 |
+
"MODELSAMPLE = \"48k\" # @param {type:\"string\"}\n",
|
| 336 |
+
"# @markdown 是否缓存训练集\n",
|
| 337 |
+
"CACHEDATA = 1 # @param {type:\"integer\"}\n",
|
| 338 |
+
"# @markdown 是否仅保存最新的ckpt文件\n",
|
| 339 |
+
"ONLYLATEST = 0 # @param {type:\"integer\"}\n",
|
| 340 |
+
"\n",
|
| 341 |
+
"!python3 train_nsf_sim_cache_sid_load_pretrain.py -e lulu -sr {MODELSAMPLE} -f0 1 -bs {BATCHSIZE} -g {USEGPU} -te {MODELEPOCH} -se {EPOCHSAVE} -pg pretrained/f0G{MODELSAMPLE}.pth -pd pretrained/f0D{MODELSAMPLE}.pth -l {ONLYLATEST} -c {CACHEDATA}"
|
| 342 |
+
]
|
| 343 |
+
},
|
| 344 |
+
{
|
| 345 |
+
"cell_type": "code",
|
| 346 |
+
"execution_count": null,
|
| 347 |
+
"metadata": {
|
| 348 |
+
"id": "haYA81hySuDl"
|
| 349 |
+
},
|
| 350 |
+
"outputs": [],
|
| 351 |
+
"source": [
|
| 352 |
+
"# @title 删除其它pth,只留选中的(慎点,仔细看代码)\n",
|
| 353 |
+
"# @markdown 模型名\n",
|
| 354 |
+
"MODELNAME = \"lulu\" # @param {type:\"string\"}\n",
|
| 355 |
+
"# @markdown 选中模型epoch\n",
|
| 356 |
+
"MODELEPOCH = 9600 # @param {type:\"integer\"}\n",
|
| 357 |
+
"\n",
|
| 358 |
+
"!echo \"备份选中的模型。。。\"\n",
|
| 359 |
+
"!cp /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/G_{MODELEPOCH}.pth /content/{MODELNAME}_D_{MODELEPOCH}.pth\n",
|
| 360 |
+
"!cp /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/D_{MODELEPOCH}.pth /content/{MODELNAME}_G_{MODELEPOCH}.pth\n",
|
| 361 |
+
"\n",
|
| 362 |
+
"!echo \"正在删除。。。\"\n",
|
| 363 |
+
"!ls /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}\n",
|
| 364 |
+
"!rm /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/*.pth\n",
|
| 365 |
+
"\n",
|
| 366 |
+
"!echo \"恢复选中的模型。。。\"\n",
|
| 367 |
+
"!mv /content/{MODELNAME}_D_{MODELEPOCH}.pth /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/G_{MODELEPOCH}.pth\n",
|
| 368 |
+
"!mv /content/{MODELNAME}_G_{MODELEPOCH}.pth /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/D_{MODELEPOCH}.pth\n",
|
| 369 |
+
"\n",
|
| 370 |
+
"!echo \"删除完成\"\n",
|
| 371 |
+
"!ls /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}"
|
| 372 |
+
]
|
| 373 |
+
},
|
| 374 |
+
{
|
| 375 |
+
"cell_type": "code",
|
| 376 |
+
"execution_count": null,
|
| 377 |
+
"metadata": {
|
| 378 |
+
"id": "QhSiPTVPoIRh"
|
| 379 |
+
},
|
| 380 |
+
"outputs": [],
|
| 381 |
+
"source": [
|
| 382 |
+
"# @title 清除项目下所有文件,只留选中的模型(慎点,仔细看代码)\n",
|
| 383 |
+
"# @markdown 模型名\n",
|
| 384 |
+
"MODELNAME = \"lulu\" # @param {type:\"string\"}\n",
|
| 385 |
+
"# @markdown 选中模型epoch\n",
|
| 386 |
+
"MODELEPOCH = 9600 # @param {type:\"integer\"}\n",
|
| 387 |
+
"\n",
|
| 388 |
+
"!echo \"备份选中的模型。。。\"\n",
|
| 389 |
+
"!cp /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/G_{MODELEPOCH}.pth /content/{MODELNAME}_D_{MODELEPOCH}.pth\n",
|
| 390 |
+
"!cp /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/D_{MODELEPOCH}.pth /content/{MODELNAME}_G_{MODELEPOCH}.pth\n",
|
| 391 |
+
"\n",
|
| 392 |
+
"!echo \"正在删除。。。\"\n",
|
| 393 |
+
"!ls /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}\n",
|
| 394 |
+
"!rm -rf /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/*\n",
|
| 395 |
+
"\n",
|
| 396 |
+
"!echo \"恢复选中的模型。。。\"\n",
|
| 397 |
+
"!mv /content/{MODELNAME}_D_{MODELEPOCH}.pth /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/G_{MODELEPOCH}.pth\n",
|
| 398 |
+
"!mv /content/{MODELNAME}_G_{MODELEPOCH}.pth /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/D_{MODELEPOCH}.pth\n",
|
| 399 |
+
"\n",
|
| 400 |
+
"!echo \"删除完成\"\n",
|
| 401 |
+
"!ls /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}"
|
| 402 |
+
]
|
| 403 |
+
}
|
| 404 |
+
],
|
| 405 |
+
"metadata": {
|
| 406 |
+
"accelerator": "GPU",
|
| 407 |
+
"colab": {
|
| 408 |
+
"private_outputs": true,
|
| 409 |
+
"provenance": []
|
| 410 |
+
},
|
| 411 |
+
"gpuClass": "standard",
|
| 412 |
+
"kernelspec": {
|
| 413 |
+
"display_name": "Python 3",
|
| 414 |
+
"name": "python3"
|
| 415 |
+
},
|
| 416 |
+
"language_info": {
|
| 417 |
+
"name": "python"
|
| 418 |
+
}
|
| 419 |
+
},
|
| 420 |
+
"nbformat": 4,
|
| 421 |
+
"nbformat_minor": 0
|
| 422 |
+
}
|
a.png
ADDED
|
app.py
ADDED
|
@@ -0,0 +1,1441 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os, sys
|
| 2 |
+
import datetime, subprocess
|
| 3 |
+
from mega import Mega
|
| 4 |
+
now_dir = os.getcwd()
|
| 5 |
+
sys.path.append(now_dir)
|
| 6 |
+
import logging
|
| 7 |
+
import shutil
|
| 8 |
+
import threading
|
| 9 |
+
import traceback
|
| 10 |
+
import warnings
|
| 11 |
+
from random import shuffle
|
| 12 |
+
from subprocess import Popen
|
| 13 |
+
from time import sleep
|
| 14 |
+
import json
|
| 15 |
+
import pathlib
|
| 16 |
+
|
| 17 |
+
import fairseq
|
| 18 |
+
import faiss
|
| 19 |
+
import gradio as gr
|
| 20 |
+
import numpy as np
|
| 21 |
+
import torch
|
| 22 |
+
from dotenv import load_dotenv
|
| 23 |
+
from sklearn.cluster import MiniBatchKMeans
|
| 24 |
+
|
| 25 |
+
from configs.config import Config
|
| 26 |
+
from i18n.i18n import I18nAuto
|
| 27 |
+
from infer.lib.train.process_ckpt import (
|
| 28 |
+
change_info,
|
| 29 |
+
extract_small_model,
|
| 30 |
+
merge,
|
| 31 |
+
show_info,
|
| 32 |
+
)
|
| 33 |
+
from infer.modules.uvr5.modules import uvr
|
| 34 |
+
from infer.modules.vc.modules import VC
|
| 35 |
+
logging.getLogger("numba").setLevel(logging.WARNING)
|
| 36 |
+
|
| 37 |
+
logger = logging.getLogger(__name__)
|
| 38 |
+
|
| 39 |
+
tmp = os.path.join(now_dir, "TEMP")
|
| 40 |
+
shutil.rmtree(tmp, ignore_errors=True)
|
| 41 |
+
shutil.rmtree("%s/runtime/Lib/site-packages/infer_pack" % (now_dir), ignore_errors=True)
|
| 42 |
+
shutil.rmtree("%s/runtime/Lib/site-packages/uvr5_pack" % (now_dir), ignore_errors=True)
|
| 43 |
+
os.makedirs(tmp, exist_ok=True)
|
| 44 |
+
os.makedirs(os.path.join(now_dir, "logs"), exist_ok=True)
|
| 45 |
+
os.makedirs(os.path.join(now_dir, "assets/weights"), exist_ok=True)
|
| 46 |
+
os.environ["TEMP"] = tmp
|
| 47 |
+
warnings.filterwarnings("ignore")
|
| 48 |
+
torch.manual_seed(114514)
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
load_dotenv()
|
| 52 |
+
config = Config()
|
| 53 |
+
vc = VC(config)
|
| 54 |
+
|
| 55 |
+
if config.dml == True:
|
| 56 |
+
|
| 57 |
+
def forward_dml(ctx, x, scale):
|
| 58 |
+
ctx.scale = scale
|
| 59 |
+
res = x.clone().detach()
|
| 60 |
+
return res
|
| 61 |
+
|
| 62 |
+
fairseq.modules.grad_multiply.GradMultiply.forward = forward_dml
|
| 63 |
+
i18n = I18nAuto()
|
| 64 |
+
logger.info(i18n)
|
| 65 |
+
# 判断是否有能用来训练和加速推理的N卡
|
| 66 |
+
ngpu = torch.cuda.device_count()
|
| 67 |
+
gpu_infos = []
|
| 68 |
+
mem = []
|
| 69 |
+
if_gpu_ok = False
|
| 70 |
+
|
| 71 |
+
if torch.cuda.is_available() or ngpu != 0:
|
| 72 |
+
for i in range(ngpu):
|
| 73 |
+
gpu_name = torch.cuda.get_device_name(i)
|
| 74 |
+
if any(
|
| 75 |
+
value in gpu_name.upper()
|
| 76 |
+
for value in [
|
| 77 |
+
"10",
|
| 78 |
+
"16",
|
| 79 |
+
"20",
|
| 80 |
+
"30",
|
| 81 |
+
"40",
|
| 82 |
+
"A2",
|
| 83 |
+
"A3",
|
| 84 |
+
"A4",
|
| 85 |
+
"P4",
|
| 86 |
+
"A50",
|
| 87 |
+
"500",
|
| 88 |
+
"A60",
|
| 89 |
+
"70",
|
| 90 |
+
"80",
|
| 91 |
+
"90",
|
| 92 |
+
"M4",
|
| 93 |
+
"T4",
|
| 94 |
+
"TITAN",
|
| 95 |
+
]
|
| 96 |
+
):
|
| 97 |
+
# A10#A100#V100#A40#P40#M40#K80#A4500
|
| 98 |
+
if_gpu_ok = True # 至少有一张能用的N卡
|
| 99 |
+
gpu_infos.append("%s\t%s" % (i, gpu_name))
|
| 100 |
+
mem.append(
|
| 101 |
+
int(
|
| 102 |
+
torch.cuda.get_device_properties(i).total_memory
|
| 103 |
+
/ 1024
|
| 104 |
+
/ 1024
|
| 105 |
+
/ 1024
|
| 106 |
+
+ 0.4
|
| 107 |
+
)
|
| 108 |
+
)
|
| 109 |
+
if if_gpu_ok and len(gpu_infos) > 0:
|
| 110 |
+
gpu_info = "\n".join(gpu_infos)
|
| 111 |
+
default_batch_size = min(mem) // 2
|
| 112 |
+
else:
|
| 113 |
+
gpu_info = i18n("很遗憾您这没有能用的显卡来支持您训练")
|
| 114 |
+
default_batch_size = 1
|
| 115 |
+
gpus = "-".join([i[0] for i in gpu_infos])
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
class ToolButton(gr.Button, gr.components.FormComponent):
|
| 119 |
+
"""Small button with single emoji as text, fits inside gradio forms"""
|
| 120 |
+
|
| 121 |
+
def __init__(self, **kwargs):
|
| 122 |
+
super().__init__(variant="tool", **kwargs)
|
| 123 |
+
|
| 124 |
+
def get_block_name(self):
|
| 125 |
+
return "button"
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
weight_root = os.getenv("weight_root")
|
| 129 |
+
weight_uvr5_root = os.getenv("weight_uvr5_root")
|
| 130 |
+
index_root = os.getenv("index_root")
|
| 131 |
+
|
| 132 |
+
names = []
|
| 133 |
+
for name in os.listdir(weight_root):
|
| 134 |
+
if name.endswith(".pth"):
|
| 135 |
+
names.append(name)
|
| 136 |
+
index_paths = []
|
| 137 |
+
for root, dirs, files in os.walk(index_root, topdown=False):
|
| 138 |
+
for name in files:
|
| 139 |
+
if name.endswith(".index") and "trained" not in name:
|
| 140 |
+
index_paths.append("%s/%s" % (root, name))
|
| 141 |
+
uvr5_names = []
|
| 142 |
+
for name in os.listdir(weight_uvr5_root):
|
| 143 |
+
if name.endswith(".pth") or "onnx" in name:
|
| 144 |
+
uvr5_names.append(name.replace(".pth", ""))
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
def change_choices():
|
| 148 |
+
names = []
|
| 149 |
+
for name in os.listdir(weight_root):
|
| 150 |
+
if name.endswith(".pth"):
|
| 151 |
+
names.append(name)
|
| 152 |
+
index_paths = []
|
| 153 |
+
for root, dirs, files in os.walk(index_root, topdown=False):
|
| 154 |
+
for name in files:
|
| 155 |
+
if name.endswith(".index") and "trained" not in name:
|
| 156 |
+
index_paths.append("%s/%s" % (root, name))
|
| 157 |
+
audio_files=[]
|
| 158 |
+
for filename in os.listdir("./audios"):
|
| 159 |
+
if filename.endswith(('.wav','.mp3','.ogg')):
|
| 160 |
+
audio_files.append('./audios/'+filename)
|
| 161 |
+
return {"choices": sorted(names), "__type__": "update"}, {
|
| 162 |
+
"choices": sorted(index_paths),
|
| 163 |
+
"__type__": "update",
|
| 164 |
+
}, {"choices": sorted(audio_files), "__type__": "update"}
|
| 165 |
+
|
| 166 |
+
def clean():
|
| 167 |
+
return {"value": "", "__type__": "update"}
|
| 168 |
+
|
| 169 |
+
|
| 170 |
+
def export_onnx():
|
| 171 |
+
from infer.modules.onnx.export import export_onnx as eo
|
| 172 |
+
|
| 173 |
+
eo()
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
sr_dict = {
|
| 177 |
+
"32k": 32000,
|
| 178 |
+
"40k": 40000,
|
| 179 |
+
"48k": 48000,
|
| 180 |
+
}
|
| 181 |
+
|
| 182 |
+
|
| 183 |
+
def if_done(done, p):
|
| 184 |
+
while 1:
|
| 185 |
+
if p.poll() is None:
|
| 186 |
+
sleep(0.5)
|
| 187 |
+
else:
|
| 188 |
+
break
|
| 189 |
+
done[0] = True
|
| 190 |
+
|
| 191 |
+
|
| 192 |
+
def if_done_multi(done, ps):
|
| 193 |
+
while 1:
|
| 194 |
+
# poll==None代表进程未结束
|
| 195 |
+
# 只要有一个进程未结束都不停
|
| 196 |
+
flag = 1
|
| 197 |
+
for p in ps:
|
| 198 |
+
if p.poll() is None:
|
| 199 |
+
flag = 0
|
| 200 |
+
sleep(0.5)
|
| 201 |
+
break
|
| 202 |
+
if flag == 1:
|
| 203 |
+
break
|
| 204 |
+
done[0] = True
|
| 205 |
+
|
| 206 |
+
|
| 207 |
+
def preprocess_dataset(trainset_dir, exp_dir, sr, n_p):
|
| 208 |
+
sr = sr_dict[sr]
|
| 209 |
+
os.makedirs("%s/logs/%s" % (now_dir, exp_dir), exist_ok=True)
|
| 210 |
+
f = open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "w")
|
| 211 |
+
f.close()
|
| 212 |
+
per = 3.0 if config.is_half else 3.7
|
| 213 |
+
cmd = '"%s" infer/modules/train/preprocess.py "%s" %s %s "%s/logs/%s" %s %.1f' % (
|
| 214 |
+
config.python_cmd,
|
| 215 |
+
trainset_dir,
|
| 216 |
+
sr,
|
| 217 |
+
n_p,
|
| 218 |
+
now_dir,
|
| 219 |
+
exp_dir,
|
| 220 |
+
config.noparallel,
|
| 221 |
+
per,
|
| 222 |
+
)
|
| 223 |
+
logger.info(cmd)
|
| 224 |
+
p = Popen(cmd, shell=True) # , stdin=PIPE, stdout=PIPE,stderr=PIPE,cwd=now_dir
|
| 225 |
+
###煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
|
| 226 |
+
done = [False]
|
| 227 |
+
threading.Thread(
|
| 228 |
+
target=if_done,
|
| 229 |
+
args=(
|
| 230 |
+
done,
|
| 231 |
+
p,
|
| 232 |
+
),
|
| 233 |
+
).start()
|
| 234 |
+
while 1:
|
| 235 |
+
with open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "r") as f:
|
| 236 |
+
yield (f.read())
|
| 237 |
+
sleep(1)
|
| 238 |
+
if done[0]:
|
| 239 |
+
break
|
| 240 |
+
with open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "r") as f:
|
| 241 |
+
log = f.read()
|
| 242 |
+
logger.info(log)
|
| 243 |
+
yield log
|
| 244 |
+
|
| 245 |
+
|
| 246 |
+
# but2.click(extract_f0,[gpus6,np7,f0method8,if_f0_3,trainset_dir4],[info2])
|
| 247 |
+
def extract_f0_feature(gpus, n_p, f0method, if_f0, exp_dir, version19, gpus_rmvpe):
|
| 248 |
+
gpus = gpus.split("-")
|
| 249 |
+
os.makedirs("%s/logs/%s" % (now_dir, exp_dir), exist_ok=True)
|
| 250 |
+
f = open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "w")
|
| 251 |
+
f.close()
|
| 252 |
+
if if_f0:
|
| 253 |
+
if f0method != "rmvpe_gpu":
|
| 254 |
+
cmd = (
|
| 255 |
+
'"%s" infer/modules/train/extract/extract_f0_print.py "%s/logs/%s" %s %s'
|
| 256 |
+
% (
|
| 257 |
+
config.python_cmd,
|
| 258 |
+
now_dir,
|
| 259 |
+
exp_dir,
|
| 260 |
+
n_p,
|
| 261 |
+
f0method,
|
| 262 |
+
)
|
| 263 |
+
)
|
| 264 |
+
logger.info(cmd)
|
| 265 |
+
p = Popen(
|
| 266 |
+
cmd, shell=True, cwd=now_dir
|
| 267 |
+
) # , stdin=PIPE, stdout=PIPE,stderr=PIPE
|
| 268 |
+
###煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
|
| 269 |
+
done = [False]
|
| 270 |
+
threading.Thread(
|
| 271 |
+
target=if_done,
|
| 272 |
+
args=(
|
| 273 |
+
done,
|
| 274 |
+
p,
|
| 275 |
+
),
|
| 276 |
+
).start()
|
| 277 |
+
else:
|
| 278 |
+
if gpus_rmvpe != "-":
|
| 279 |
+
gpus_rmvpe = gpus_rmvpe.split("-")
|
| 280 |
+
leng = len(gpus_rmvpe)
|
| 281 |
+
ps = []
|
| 282 |
+
for idx, n_g in enumerate(gpus_rmvpe):
|
| 283 |
+
cmd = (
|
| 284 |
+
'"%s" infer/modules/train/extract/extract_f0_rmvpe.py %s %s %s "%s/logs/%s" %s '
|
| 285 |
+
% (
|
| 286 |
+
config.python_cmd,
|
| 287 |
+
leng,
|
| 288 |
+
idx,
|
| 289 |
+
n_g,
|
| 290 |
+
now_dir,
|
| 291 |
+
exp_dir,
|
| 292 |
+
config.is_half,
|
| 293 |
+
)
|
| 294 |
+
)
|
| 295 |
+
logger.info(cmd)
|
| 296 |
+
p = Popen(
|
| 297 |
+
cmd, shell=True, cwd=now_dir
|
| 298 |
+
) # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir
|
| 299 |
+
ps.append(p)
|
| 300 |
+
###煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
|
| 301 |
+
done = [False]
|
| 302 |
+
threading.Thread(
|
| 303 |
+
target=if_done_multi, #
|
| 304 |
+
args=(
|
| 305 |
+
done,
|
| 306 |
+
ps,
|
| 307 |
+
),
|
| 308 |
+
).start()
|
| 309 |
+
else:
|
| 310 |
+
cmd = (
|
| 311 |
+
config.python_cmd
|
| 312 |
+
+ ' infer/modules/train/extract/extract_f0_rmvpe_dml.py "%s/logs/%s" '
|
| 313 |
+
% (
|
| 314 |
+
now_dir,
|
| 315 |
+
exp_dir,
|
| 316 |
+
)
|
| 317 |
+
)
|
| 318 |
+
logger.info(cmd)
|
| 319 |
+
p = Popen(
|
| 320 |
+
cmd, shell=True, cwd=now_dir
|
| 321 |
+
) # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir
|
| 322 |
+
p.wait()
|
| 323 |
+
done = [True]
|
| 324 |
+
while 1:
|
| 325 |
+
with open(
|
| 326 |
+
"%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r"
|
| 327 |
+
) as f:
|
| 328 |
+
yield (f.read())
|
| 329 |
+
sleep(1)
|
| 330 |
+
if done[0]:
|
| 331 |
+
break
|
| 332 |
+
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f:
|
| 333 |
+
log = f.read()
|
| 334 |
+
logger.info(log)
|
| 335 |
+
yield log
|
| 336 |
+
####对不同part分别开多进程
|
| 337 |
+
"""
|
| 338 |
+
n_part=int(sys.argv[1])
|
| 339 |
+
i_part=int(sys.argv[2])
|
| 340 |
+
i_gpu=sys.argv[3]
|
| 341 |
+
exp_dir=sys.argv[4]
|
| 342 |
+
os.environ["CUDA_VISIBLE_DEVICES"]=str(i_gpu)
|
| 343 |
+
"""
|
| 344 |
+
leng = len(gpus)
|
| 345 |
+
ps = []
|
| 346 |
+
for idx, n_g in enumerate(gpus):
|
| 347 |
+
cmd = (
|
| 348 |
+
'"%s" infer/modules/train/extract_feature_print.py %s %s %s %s "%s/logs/%s" %s'
|
| 349 |
+
% (
|
| 350 |
+
config.python_cmd,
|
| 351 |
+
config.device,
|
| 352 |
+
leng,
|
| 353 |
+
idx,
|
| 354 |
+
n_g,
|
| 355 |
+
now_dir,
|
| 356 |
+
exp_dir,
|
| 357 |
+
version19,
|
| 358 |
+
)
|
| 359 |
+
)
|
| 360 |
+
logger.info(cmd)
|
| 361 |
+
p = Popen(
|
| 362 |
+
cmd, shell=True, cwd=now_dir
|
| 363 |
+
) # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir
|
| 364 |
+
ps.append(p)
|
| 365 |
+
###煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
|
| 366 |
+
done = [False]
|
| 367 |
+
threading.Thread(
|
| 368 |
+
target=if_done_multi,
|
| 369 |
+
args=(
|
| 370 |
+
done,
|
| 371 |
+
ps,
|
| 372 |
+
),
|
| 373 |
+
).start()
|
| 374 |
+
while 1:
|
| 375 |
+
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f:
|
| 376 |
+
yield (f.read())
|
| 377 |
+
sleep(1)
|
| 378 |
+
if done[0]:
|
| 379 |
+
break
|
| 380 |
+
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f:
|
| 381 |
+
log = f.read()
|
| 382 |
+
logger.info(log)
|
| 383 |
+
yield log
|
| 384 |
+
|
| 385 |
+
|
| 386 |
+
def get_pretrained_models(path_str, f0_str, sr2):
|
| 387 |
+
if_pretrained_generator_exist = os.access(
|
| 388 |
+
"assets/pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2), os.F_OK
|
| 389 |
+
)
|
| 390 |
+
if_pretrained_discriminator_exist = os.access(
|
| 391 |
+
"assets/pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2), os.F_OK
|
| 392 |
+
)
|
| 393 |
+
if not if_pretrained_generator_exist:
|
| 394 |
+
logger.warn(
|
| 395 |
+
"assets/pretrained%s/%sG%s.pth not exist, will not use pretrained model",
|
| 396 |
+
path_str,
|
| 397 |
+
f0_str,
|
| 398 |
+
sr2,
|
| 399 |
+
)
|
| 400 |
+
if not if_pretrained_discriminator_exist:
|
| 401 |
+
logger.warn(
|
| 402 |
+
"assets/pretrained%s/%sD%s.pth not exist, will not use pretrained model",
|
| 403 |
+
path_str,
|
| 404 |
+
f0_str,
|
| 405 |
+
sr2,
|
| 406 |
+
)
|
| 407 |
+
return (
|
| 408 |
+
"assets/pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2)
|
| 409 |
+
if if_pretrained_generator_exist
|
| 410 |
+
else "",
|
| 411 |
+
"assets/pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2)
|
| 412 |
+
if if_pretrained_discriminator_exist
|
| 413 |
+
else "",
|
| 414 |
+
)
|
| 415 |
+
|
| 416 |
+
|
| 417 |
+
def change_sr2(sr2, if_f0_3, version19):
|
| 418 |
+
path_str = "" if version19 == "v1" else "_v2"
|
| 419 |
+
f0_str = "f0" if if_f0_3 else ""
|
| 420 |
+
return get_pretrained_models(path_str, f0_str, sr2)
|
| 421 |
+
|
| 422 |
+
|
| 423 |
+
def change_version19(sr2, if_f0_3, version19):
|
| 424 |
+
path_str = "" if version19 == "v1" else "_v2"
|
| 425 |
+
if sr2 == "32k" and version19 == "v1":
|
| 426 |
+
sr2 = "40k"
|
| 427 |
+
to_return_sr2 = (
|
| 428 |
+
{"choices": ["40k", "48k"], "__type__": "update", "value": sr2}
|
| 429 |
+
if version19 == "v1"
|
| 430 |
+
else {"choices": ["40k", "48k", "32k"], "__type__": "update", "value": sr2}
|
| 431 |
+
)
|
| 432 |
+
f0_str = "f0" if if_f0_3 else ""
|
| 433 |
+
return (
|
| 434 |
+
*get_pretrained_models(path_str, f0_str, sr2),
|
| 435 |
+
to_return_sr2,
|
| 436 |
+
)
|
| 437 |
+
|
| 438 |
+
|
| 439 |
+
def change_f0(if_f0_3, sr2, version19): # f0method8,pretrained_G14,pretrained_D15
|
| 440 |
+
path_str = "" if version19 == "v1" else "_v2"
|
| 441 |
+
return (
|
| 442 |
+
{"visible": if_f0_3, "__type__": "update"},
|
| 443 |
+
*get_pretrained_models(path_str, "f0", sr2),
|
| 444 |
+
)
|
| 445 |
+
|
| 446 |
+
|
| 447 |
+
# but3.click(click_train,[exp_dir1,sr2,if_f0_3,save_epoch10,total_epoch11,batch_size12,if_save_latest13,pretrained_G14,pretrained_D15,gpus16])
|
| 448 |
+
def click_train(
|
| 449 |
+
exp_dir1,
|
| 450 |
+
sr2,
|
| 451 |
+
if_f0_3,
|
| 452 |
+
spk_id5,
|
| 453 |
+
save_epoch10,
|
| 454 |
+
total_epoch11,
|
| 455 |
+
batch_size12,
|
| 456 |
+
if_save_latest13,
|
| 457 |
+
pretrained_G14,
|
| 458 |
+
pretrained_D15,
|
| 459 |
+
gpus16,
|
| 460 |
+
if_cache_gpu17,
|
| 461 |
+
if_save_every_weights18,
|
| 462 |
+
version19,
|
| 463 |
+
):
|
| 464 |
+
# 生成filelist
|
| 465 |
+
exp_dir = "%s/logs/%s" % (now_dir, exp_dir1)
|
| 466 |
+
os.makedirs(exp_dir, exist_ok=True)
|
| 467 |
+
gt_wavs_dir = "%s/0_gt_wavs" % (exp_dir)
|
| 468 |
+
feature_dir = (
|
| 469 |
+
"%s/3_feature256" % (exp_dir)
|
| 470 |
+
if version19 == "v1"
|
| 471 |
+
else "%s/3_feature768" % (exp_dir)
|
| 472 |
+
)
|
| 473 |
+
if if_f0_3:
|
| 474 |
+
f0_dir = "%s/2a_f0" % (exp_dir)
|
| 475 |
+
f0nsf_dir = "%s/2b-f0nsf" % (exp_dir)
|
| 476 |
+
names = (
|
| 477 |
+
set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)])
|
| 478 |
+
& set([name.split(".")[0] for name in os.listdir(feature_dir)])
|
| 479 |
+
& set([name.split(".")[0] for name in os.listdir(f0_dir)])
|
| 480 |
+
& set([name.split(".")[0] for name in os.listdir(f0nsf_dir)])
|
| 481 |
+
)
|
| 482 |
+
else:
|
| 483 |
+
names = set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)]) & set(
|
| 484 |
+
[name.split(".")[0] for name in os.listdir(feature_dir)]
|
| 485 |
+
)
|
| 486 |
+
opt = []
|
| 487 |
+
for name in names:
|
| 488 |
+
if if_f0_3:
|
| 489 |
+
opt.append(
|
| 490 |
+
"%s/%s.wav|%s/%s.npy|%s/%s.wav.npy|%s/%s.wav.npy|%s"
|
| 491 |
+
% (
|
| 492 |
+
gt_wavs_dir.replace("\\", "\\\\"),
|
| 493 |
+
name,
|
| 494 |
+
feature_dir.replace("\\", "\\\\"),
|
| 495 |
+
name,
|
| 496 |
+
f0_dir.replace("\\", "\\\\"),
|
| 497 |
+
name,
|
| 498 |
+
f0nsf_dir.replace("\\", "\\\\"),
|
| 499 |
+
name,
|
| 500 |
+
spk_id5,
|
| 501 |
+
)
|
| 502 |
+
)
|
| 503 |
+
else:
|
| 504 |
+
opt.append(
|
| 505 |
+
"%s/%s.wav|%s/%s.npy|%s"
|
| 506 |
+
% (
|
| 507 |
+
gt_wavs_dir.replace("\\", "\\\\"),
|
| 508 |
+
name,
|
| 509 |
+
feature_dir.replace("\\", "\\\\"),
|
| 510 |
+
name,
|
| 511 |
+
spk_id5,
|
| 512 |
+
)
|
| 513 |
+
)
|
| 514 |
+
fea_dim = 256 if version19 == "v1" else 768
|
| 515 |
+
if if_f0_3:
|
| 516 |
+
for _ in range(2):
|
| 517 |
+
opt.append(
|
| 518 |
+
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s/logs/mute/2a_f0/mute.wav.npy|%s/logs/mute/2b-f0nsf/mute.wav.npy|%s"
|
| 519 |
+
% (now_dir, sr2, now_dir, fea_dim, now_dir, now_dir, spk_id5)
|
| 520 |
+
)
|
| 521 |
+
else:
|
| 522 |
+
for _ in range(2):
|
| 523 |
+
opt.append(
|
| 524 |
+
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s"
|
| 525 |
+
% (now_dir, sr2, now_dir, fea_dim, spk_id5)
|
| 526 |
+
)
|
| 527 |
+
shuffle(opt)
|
| 528 |
+
with open("%s/filelist.txt" % exp_dir, "w") as f:
|
| 529 |
+
f.write("\n".join(opt))
|
| 530 |
+
logger.debug("Write filelist done")
|
| 531 |
+
# 生成config#无需生成config
|
| 532 |
+
# cmd = python_cmd + " train_nsf_sim_cache_sid_load_pretrain.py -e mi-test -sr 40k -f0 1 -bs 4 -g 0 -te 10 -se 5 -pg pretrained/f0G40k.pth -pd pretrained/f0D40k.pth -l 1 -c 0"
|
| 533 |
+
logger.info("Use gpus: %s", str(gpus16))
|
| 534 |
+
if pretrained_G14 == "":
|
| 535 |
+
logger.info("No pretrained Generator")
|
| 536 |
+
if pretrained_D15 == "":
|
| 537 |
+
logger.info("No pretrained Discriminator")
|
| 538 |
+
if version19 == "v1" or sr2 == "40k":
|
| 539 |
+
config_path = "v1/%s.json" % sr2
|
| 540 |
+
else:
|
| 541 |
+
config_path = "v2/%s.json" % sr2
|
| 542 |
+
config_save_path = os.path.join(exp_dir, "config.json")
|
| 543 |
+
if not pathlib.Path(config_save_path).exists():
|
| 544 |
+
with open(config_save_path, "w", encoding="utf-8") as f:
|
| 545 |
+
json.dump(
|
| 546 |
+
config.json_config[config_path],
|
| 547 |
+
f,
|
| 548 |
+
ensure_ascii=False,
|
| 549 |
+
indent=4,
|
| 550 |
+
sort_keys=True,
|
| 551 |
+
)
|
| 552 |
+
f.write("\n")
|
| 553 |
+
if gpus16:
|
| 554 |
+
cmd = (
|
| 555 |
+
'"%s" infer/modules/train/train.py -e "%s" -sr %s -f0 %s -bs %s -g %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s'
|
| 556 |
+
% (
|
| 557 |
+
config.python_cmd,
|
| 558 |
+
exp_dir1,
|
| 559 |
+
sr2,
|
| 560 |
+
1 if if_f0_3 else 0,
|
| 561 |
+
batch_size12,
|
| 562 |
+
gpus16,
|
| 563 |
+
total_epoch11,
|
| 564 |
+
save_epoch10,
|
| 565 |
+
"-pg %s" % pretrained_G14 if pretrained_G14 != "" else "",
|
| 566 |
+
"-pd %s" % pretrained_D15 if pretrained_D15 != "" else "",
|
| 567 |
+
1 if if_save_latest13 == i18n("是") else 0,
|
| 568 |
+
1 if if_cache_gpu17 == i18n("是") else 0,
|
| 569 |
+
1 if if_save_every_weights18 == i18n("是") else 0,
|
| 570 |
+
version19,
|
| 571 |
+
)
|
| 572 |
+
)
|
| 573 |
+
else:
|
| 574 |
+
cmd = (
|
| 575 |
+
'"%s" infer/modules/train/train.py -e "%s" -sr %s -f0 %s -bs %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s'
|
| 576 |
+
% (
|
| 577 |
+
config.python_cmd,
|
| 578 |
+
exp_dir1,
|
| 579 |
+
sr2,
|
| 580 |
+
1 if if_f0_3 else 0,
|
| 581 |
+
batch_size12,
|
| 582 |
+
total_epoch11,
|
| 583 |
+
save_epoch10,
|
| 584 |
+
"-pg %s" % pretrained_G14 if pretrained_G14 != "" else "",
|
| 585 |
+
"-pd %s" % pretrained_D15 if pretrained_D15 != "" else "",
|
| 586 |
+
1 if if_save_latest13 == i18n("是") else 0,
|
| 587 |
+
1 if if_cache_gpu17 == i18n("是") else 0,
|
| 588 |
+
1 if if_save_every_weights18 == i18n("是") else 0,
|
| 589 |
+
version19,
|
| 590 |
+
)
|
| 591 |
+
)
|
| 592 |
+
logger.info(cmd)
|
| 593 |
+
p = Popen(cmd, shell=True, cwd=now_dir)
|
| 594 |
+
p.wait()
|
| 595 |
+
return "训练结束, 您可查看控制台训练日志或实验文件夹下的train.log"
|
| 596 |
+
|
| 597 |
+
|
| 598 |
+
# but4.click(train_index, [exp_dir1], info3)
|
| 599 |
+
def train_index(exp_dir1, version19):
|
| 600 |
+
# exp_dir = "%s/logs/%s" % (now_dir, exp_dir1)
|
| 601 |
+
exp_dir = "logs/%s" % (exp_dir1)
|
| 602 |
+
os.makedirs(exp_dir, exist_ok=True)
|
| 603 |
+
feature_dir = (
|
| 604 |
+
"%s/3_feature256" % (exp_dir)
|
| 605 |
+
if version19 == "v1"
|
| 606 |
+
else "%s/3_feature768" % (exp_dir)
|
| 607 |
+
)
|
| 608 |
+
if not os.path.exists(feature_dir):
|
| 609 |
+
return "请先进行特征提取!"
|
| 610 |
+
listdir_res = list(os.listdir(feature_dir))
|
| 611 |
+
if len(listdir_res) == 0:
|
| 612 |
+
return "请先进行特征提取!"
|
| 613 |
+
infos = []
|
| 614 |
+
npys = []
|
| 615 |
+
for name in sorted(listdir_res):
|
| 616 |
+
phone = np.load("%s/%s" % (feature_dir, name))
|
| 617 |
+
npys.append(phone)
|
| 618 |
+
big_npy = np.concatenate(npys, 0)
|
| 619 |
+
big_npy_idx = np.arange(big_npy.shape[0])
|
| 620 |
+
np.random.shuffle(big_npy_idx)
|
| 621 |
+
big_npy = big_npy[big_npy_idx]
|
| 622 |
+
if big_npy.shape[0] > 2e5:
|
| 623 |
+
infos.append("Trying doing kmeans %s shape to 10k centers." % big_npy.shape[0])
|
| 624 |
+
yield "\n".join(infos)
|
| 625 |
+
try:
|
| 626 |
+
big_npy = (
|
| 627 |
+
MiniBatchKMeans(
|
| 628 |
+
n_clusters=10000,
|
| 629 |
+
verbose=True,
|
| 630 |
+
batch_size=256 * config.n_cpu,
|
| 631 |
+
compute_labels=False,
|
| 632 |
+
init="random",
|
| 633 |
+
)
|
| 634 |
+
.fit(big_npy)
|
| 635 |
+
.cluster_centers_
|
| 636 |
+
)
|
| 637 |
+
except:
|
| 638 |
+
info = traceback.format_exc()
|
| 639 |
+
logger.info(info)
|
| 640 |
+
infos.append(info)
|
| 641 |
+
yield "\n".join(infos)
|
| 642 |
+
|
| 643 |
+
np.save("%s/total_fea.npy" % exp_dir, big_npy)
|
| 644 |
+
n_ivf = min(int(16 * np.sqrt(big_npy.shape[0])), big_npy.shape[0] // 39)
|
| 645 |
+
infos.append("%s,%s" % (big_npy.shape, n_ivf))
|
| 646 |
+
yield "\n".join(infos)
|
| 647 |
+
index = faiss.index_factory(256 if version19 == "v1" else 768, "IVF%s,Flat" % n_ivf)
|
| 648 |
+
# index = faiss.index_factory(256if version19=="v1"else 768, "IVF%s,PQ128x4fs,RFlat"%n_ivf)
|
| 649 |
+
infos.append("training")
|
| 650 |
+
yield "\n".join(infos)
|
| 651 |
+
index_ivf = faiss.extract_index_ivf(index) #
|
| 652 |
+
index_ivf.nprobe = 1
|
| 653 |
+
index.train(big_npy)
|
| 654 |
+
faiss.write_index(
|
| 655 |
+
index,
|
| 656 |
+
"%s/trained_IVF%s_Flat_nprobe_%s_%s_%s.index"
|
| 657 |
+
% (exp_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19),
|
| 658 |
+
)
|
| 659 |
+
|
| 660 |
+
infos.append("adding")
|
| 661 |
+
yield "\n".join(infos)
|
| 662 |
+
batch_size_add = 8192
|
| 663 |
+
for i in range(0, big_npy.shape[0], batch_size_add):
|
| 664 |
+
index.add(big_npy[i : i + batch_size_add])
|
| 665 |
+
faiss.write_index(
|
| 666 |
+
index,
|
| 667 |
+
"%s/added_IVF%s_Flat_nprobe_%s_%s_%s.index"
|
| 668 |
+
% (exp_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19),
|
| 669 |
+
)
|
| 670 |
+
infos.append(
|
| 671 |
+
"成功构建索引,added_IVF%s_Flat_nprobe_%s_%s_%s.index"
|
| 672 |
+
% (n_ivf, index_ivf.nprobe, exp_dir1, version19)
|
| 673 |
+
)
|
| 674 |
+
# faiss.write_index(index, '%s/added_IVF%s_Flat_FastScan_%s.index'%(exp_dir,n_ivf,version19))
|
| 675 |
+
# infos.append("成功构建索引,added_IVF%s_Flat_FastScan_%s.index"%(n_ivf,version19))
|
| 676 |
+
yield "\n".join(infos)
|
| 677 |
+
|
| 678 |
+
|
| 679 |
+
# but5.click(train1key, [exp_dir1, sr2, if_f0_3, trainset_dir4, spk_id5, gpus6, np7, f0method8, save_epoch10, total_epoch11, batch_size12, if_save_latest13, pretrained_G14, pretrained_D15, gpus16, if_cache_gpu17], info3)
|
| 680 |
+
def train1key(
|
| 681 |
+
exp_dir1,
|
| 682 |
+
sr2,
|
| 683 |
+
if_f0_3,
|
| 684 |
+
trainset_dir4,
|
| 685 |
+
spk_id5,
|
| 686 |
+
np7,
|
| 687 |
+
f0method8,
|
| 688 |
+
save_epoch10,
|
| 689 |
+
total_epoch11,
|
| 690 |
+
batch_size12,
|
| 691 |
+
if_save_latest13,
|
| 692 |
+
pretrained_G14,
|
| 693 |
+
pretrained_D15,
|
| 694 |
+
gpus16,
|
| 695 |
+
if_cache_gpu17,
|
| 696 |
+
if_save_every_weights18,
|
| 697 |
+
version19,
|
| 698 |
+
gpus_rmvpe,
|
| 699 |
+
):
|
| 700 |
+
infos = []
|
| 701 |
+
|
| 702 |
+
def get_info_str(strr):
|
| 703 |
+
infos.append(strr)
|
| 704 |
+
return "\n".join(infos)
|
| 705 |
+
|
| 706 |
+
####### step1:处理数据
|
| 707 |
+
yield get_info_str(i18n("step1:正在处理数据"))
|
| 708 |
+
[get_info_str(_) for _ in preprocess_dataset(trainset_dir4, exp_dir1, sr2, np7)]
|
| 709 |
+
|
| 710 |
+
####### step2a:提取音高
|
| 711 |
+
yield get_info_str(i18n("step2:正在提取音高&正在提取特征"))
|
| 712 |
+
[
|
| 713 |
+
get_info_str(_)
|
| 714 |
+
for _ in extract_f0_feature(
|
| 715 |
+
gpus16, np7, f0method8, if_f0_3, exp_dir1, version19, gpus_rmvpe
|
| 716 |
+
)
|
| 717 |
+
]
|
| 718 |
+
|
| 719 |
+
####### step3a:训练模型
|
| 720 |
+
yield get_info_str(i18n("step3a:正在训练模型"))
|
| 721 |
+
click_train(
|
| 722 |
+
exp_dir1,
|
| 723 |
+
sr2,
|
| 724 |
+
if_f0_3,
|
| 725 |
+
spk_id5,
|
| 726 |
+
save_epoch10,
|
| 727 |
+
total_epoch11,
|
| 728 |
+
batch_size12,
|
| 729 |
+
if_save_latest13,
|
| 730 |
+
pretrained_G14,
|
| 731 |
+
pretrained_D15,
|
| 732 |
+
gpus16,
|
| 733 |
+
if_cache_gpu17,
|
| 734 |
+
if_save_every_weights18,
|
| 735 |
+
version19,
|
| 736 |
+
)
|
| 737 |
+
yield get_info_str(i18n("训练结束, 您可查看控制台训练日志或实验文件夹下的train.log"))
|
| 738 |
+
|
| 739 |
+
####### step3b:训练索引
|
| 740 |
+
[get_info_str(_) for _ in train_index(exp_dir1, version19)]
|
| 741 |
+
yield get_info_str(i18n("全流程结束!"))
|
| 742 |
+
|
| 743 |
+
|
| 744 |
+
# ckpt_path2.change(change_info_,[ckpt_path2],[sr__,if_f0__])
|
| 745 |
+
def change_info_(ckpt_path):
|
| 746 |
+
if not os.path.exists(ckpt_path.replace(os.path.basename(ckpt_path), "train.log")):
|
| 747 |
+
return {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"}
|
| 748 |
+
try:
|
| 749 |
+
with open(
|
| 750 |
+
ckpt_path.replace(os.path.basename(ckpt_path), "train.log"), "r"
|
| 751 |
+
) as f:
|
| 752 |
+
info = eval(f.read().strip("\n").split("\n")[0].split("\t")[-1])
|
| 753 |
+
sr, f0 = info["sample_rate"], info["if_f0"]
|
| 754 |
+
version = "v2" if ("version" in info and info["version"] == "v2") else "v1"
|
| 755 |
+
return sr, str(f0), version
|
| 756 |
+
except:
|
| 757 |
+
traceback.print_exc()
|
| 758 |
+
return {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"}
|
| 759 |
+
|
| 760 |
+
|
| 761 |
+
F0GPUVisible = config.dml == False
|
| 762 |
+
|
| 763 |
+
|
| 764 |
+
def change_f0_method(f0method8):
|
| 765 |
+
if f0method8 == "rmvpe_gpu":
|
| 766 |
+
visible = F0GPUVisible
|
| 767 |
+
else:
|
| 768 |
+
visible = False
|
| 769 |
+
return {"visible": visible, "__type__": "update"}
|
| 770 |
+
|
| 771 |
+
def find_model():
|
| 772 |
+
if len(names) > 0:
|
| 773 |
+
vc.get_vc(sorted(names)[0],None,None)
|
| 774 |
+
return sorted(names)[0]
|
| 775 |
+
else:
|
| 776 |
+
try:
|
| 777 |
+
gr.Info("Do not forget to choose a model.")
|
| 778 |
+
except:
|
| 779 |
+
pass
|
| 780 |
+
return ''
|
| 781 |
+
|
| 782 |
+
def find_audios(index=False):
|
| 783 |
+
audio_files=[]
|
| 784 |
+
if not os.path.exists('./audios'): os.mkdir("./audios")
|
| 785 |
+
for filename in os.listdir("./audios"):
|
| 786 |
+
if filename.endswith(('.wav','.mp3','.ogg')):
|
| 787 |
+
audio_files.append("./audios/"+filename)
|
| 788 |
+
if index:
|
| 789 |
+
if len(audio_files) > 0: return sorted(audio_files)[0]
|
| 790 |
+
else: return ""
|
| 791 |
+
elif len(audio_files) > 0: return sorted(audio_files)
|
| 792 |
+
else: return []
|
| 793 |
+
|
| 794 |
+
def get_index():
|
| 795 |
+
if find_model() != '':
|
| 796 |
+
chosen_model=sorted(names)[0].split(".")[0]
|
| 797 |
+
logs_path="./logs/"+chosen_model
|
| 798 |
+
if os.path.exists(logs_path):
|
| 799 |
+
for file in os.listdir(logs_path):
|
| 800 |
+
if file.endswith(".index"):
|
| 801 |
+
return os.path.join(logs_path, file)
|
| 802 |
+
return ''
|
| 803 |
+
else:
|
| 804 |
+
return ''
|
| 805 |
+
|
| 806 |
+
def get_indexes():
|
| 807 |
+
indexes_list=[]
|
| 808 |
+
for dirpath, dirnames, filenames in os.walk("./logs/"):
|
| 809 |
+
for filename in filenames:
|
| 810 |
+
if filename.endswith(".index"):
|
| 811 |
+
indexes_list.append(os.path.join(dirpath,filename))
|
| 812 |
+
if len(indexes_list) > 0:
|
| 813 |
+
return indexes_list
|
| 814 |
+
else:
|
| 815 |
+
return ''
|
| 816 |
+
|
| 817 |
+
def save_wav(file):
|
| 818 |
+
try:
|
| 819 |
+
file_path=file.name
|
| 820 |
+
shutil.move(file_path,'./audios')
|
| 821 |
+
return './audios/'+os.path.basename(file_path)
|
| 822 |
+
except AttributeError:
|
| 823 |
+
try:
|
| 824 |
+
new_name = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")+'.wav'
|
| 825 |
+
new_path='./audios/'+new_name
|
| 826 |
+
shutil.move(file,new_path)
|
| 827 |
+
return new_path
|
| 828 |
+
except TypeError:
|
| 829 |
+
return None
|
| 830 |
+
|
| 831 |
+
def download_from_url(url, model):
|
| 832 |
+
if url == '':
|
| 833 |
+
return "URL cannot be left empty."
|
| 834 |
+
if model =='':
|
| 835 |
+
return "You need to name your model. For example: My-Model"
|
| 836 |
+
url = url.strip()
|
| 837 |
+
zip_dirs = ["zips", "unzips"]
|
| 838 |
+
for directory in zip_dirs:
|
| 839 |
+
if os.path.exists(directory):
|
| 840 |
+
shutil.rmtree(directory)
|
| 841 |
+
os.makedirs("zips", exist_ok=True)
|
| 842 |
+
os.makedirs("unzips", exist_ok=True)
|
| 843 |
+
zipfile = model + '.zip'
|
| 844 |
+
zipfile_path = './zips/' + zipfile
|
| 845 |
+
try:
|
| 846 |
+
if "drive.google.com" in url:
|
| 847 |
+
subprocess.run(["gdown", url, "--fuzzy", "-O", zipfile_path])
|
| 848 |
+
elif "mega.nz" in url:
|
| 849 |
+
m = Mega()
|
| 850 |
+
m.download_url(url, './zips')
|
| 851 |
+
else:
|
| 852 |
+
subprocess.run(["wget", url, "-O", zipfile_path])
|
| 853 |
+
for filename in os.listdir("./zips"):
|
| 854 |
+
if filename.endswith(".zip"):
|
| 855 |
+
zipfile_path = os.path.join("./zips/",filename)
|
| 856 |
+
shutil.unpack_archive(zipfile_path, "./unzips", 'zip')
|
| 857 |
+
else:
|
| 858 |
+
return "No zipfile found."
|
| 859 |
+
for root, dirs, files in os.walk('./unzips'):
|
| 860 |
+
for file in files:
|
| 861 |
+
file_path = os.path.join(root, file)
|
| 862 |
+
if file.endswith(".index"):
|
| 863 |
+
os.mkdir(f'./logs/{model}')
|
| 864 |
+
shutil.copy2(file_path,f'./logs/{model}')
|
| 865 |
+
elif "G_" not in file and "D_" not in file and file.endswith(".pth"):
|
| 866 |
+
shutil.copy(file_path,f'./assets/weights/{model}.pth')
|
| 867 |
+
shutil.rmtree("zips")
|
| 868 |
+
shutil.rmtree("unzips")
|
| 869 |
+
return "Success."
|
| 870 |
+
except:
|
| 871 |
+
return "There's been an error."
|
| 872 |
+
|
| 873 |
+
def upload_to_dataset(files, dir):
|
| 874 |
+
if dir == '':
|
| 875 |
+
dir = './dataset/'+datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
|
| 876 |
+
if not os.path.exists(dir):
|
| 877 |
+
os.makedirs(dir)
|
| 878 |
+
for file in files:
|
| 879 |
+
path=file.name
|
| 880 |
+
shutil.copy2(path,dir)
|
| 881 |
+
try:
|
| 882 |
+
gr.Info(i18n("处理数据"))
|
| 883 |
+
except:
|
| 884 |
+
pass
|
| 885 |
+
return i18n("处理数据"), {"value":dir,"__type__":"update"}
|
| 886 |
+
|
| 887 |
+
def download_model_files(model):
|
| 888 |
+
model_found = False
|
| 889 |
+
index_found = False
|
| 890 |
+
if os.path.exists(f'./assets/weights/{model}.pth'): model_found = True
|
| 891 |
+
if os.path.exists(f'./logs/{model}'):
|
| 892 |
+
for file in os.listdir(f'./logs/{model}'):
|
| 893 |
+
if file.endswith('.index') and 'added' in file:
|
| 894 |
+
log_file = file
|
| 895 |
+
index_found = True
|
| 896 |
+
if model_found and index_found:
|
| 897 |
+
return [f'./assets/weights/{model}.pth', f'./logs/{model}/{log_file}'], "Done"
|
| 898 |
+
elif model_found and not index_found:
|
| 899 |
+
return f'./assets/weights/{model}.pth', "Could not find Index file."
|
| 900 |
+
elif index_found and not model_found:
|
| 901 |
+
return f'./logs/{model}/{log_file}', f'Make sure the Voice Name is correct. I could not find {model}.pth'
|
| 902 |
+
else:
|
| 903 |
+
return None, f'Could not find {model}.pth or corresponding Index file.'
|
| 904 |
+
|
| 905 |
+
with gr.Blocks(title="🔊",theme=gr.themes.Base(primary_hue="rose",neutral_hue="zinc")) as app:
|
| 906 |
+
with gr.Row():
|
| 907 |
+
gr.HTML("<img src='file/a.png' alt='image'>")
|
| 908 |
+
with gr.Tabs():
|
| 909 |
+
with gr.TabItem(i18n("模型推理")):
|
| 910 |
+
with gr.Row():
|
| 911 |
+
sid0 = gr.Dropdown(label=i18n("推理音色"), choices=sorted(names), value=find_model())
|
| 912 |
+
refresh_button = gr.Button(i18n("刷新音色列表和索引路径"), variant="primary")
|
| 913 |
+
#clean_button = gr.Button(i18n("卸载音色省显存"), variant="primary")
|
| 914 |
+
spk_item = gr.Slider(
|
| 915 |
+
minimum=0,
|
| 916 |
+
maximum=2333,
|
| 917 |
+
step=1,
|
| 918 |
+
label=i18n("请选择说话人id"),
|
| 919 |
+
value=0,
|
| 920 |
+
visible=False,
|
| 921 |
+
interactive=True,
|
| 922 |
+
)
|
| 923 |
+
#clean_button.click(
|
| 924 |
+
# fn=clean, inputs=[], outputs=[sid0], api_name="infer_clean"
|
| 925 |
+
#)
|
| 926 |
+
vc_transform0 = gr.Number(
|
| 927 |
+
label=i18n("变调(整数, 半音数量, 升八度12降八度-12)"), value=0
|
| 928 |
+
)
|
| 929 |
+
but0 = gr.Button(i18n("转换"), variant="primary")
|
| 930 |
+
with gr.Row():
|
| 931 |
+
with gr.Column():
|
| 932 |
+
with gr.Row():
|
| 933 |
+
dropbox = gr.File(label="Drop your audio here & hit the Reload button.")
|
| 934 |
+
with gr.Row():
|
| 935 |
+
record_button=gr.Audio(source="microphone", label="OR Record audio.", type="filepath")
|
| 936 |
+
with gr.Row():
|
| 937 |
+
input_audio0 = gr.Dropdown(
|
| 938 |
+
label=i18n("输入待处理音频文件路径(默认是正确格式示例)"),
|
| 939 |
+
value=find_audios(True),
|
| 940 |
+
choices=find_audios()
|
| 941 |
+
)
|
| 942 |
+
record_button.change(fn=save_wav, inputs=[record_button], outputs=[input_audio0])
|
| 943 |
+
dropbox.upload(fn=save_wav, inputs=[dropbox], outputs=[input_audio0])
|
| 944 |
+
with gr.Column():
|
| 945 |
+
with gr.Accordion(label=i18n("自动检测index路径,下拉式选择(dropdown)"), open=False):
|
| 946 |
+
file_index2 = gr.Dropdown(
|
| 947 |
+
label=i18n("自动检测index路径,下拉式选择(dropdown)"),
|
| 948 |
+
choices=get_indexes(),
|
| 949 |
+
interactive=True,
|
| 950 |
+
value=get_index()
|
| 951 |
+
)
|
| 952 |
+
index_rate1 = gr.Slider(
|
| 953 |
+
minimum=0,
|
| 954 |
+
maximum=1,
|
| 955 |
+
label=i18n("检索特征占比"),
|
| 956 |
+
value=0.66,
|
| 957 |
+
interactive=True,
|
| 958 |
+
)
|
| 959 |
+
vc_output2 = gr.Audio(label=i18n("输出音频(右下角三个点,点了可以下载)"))
|
| 960 |
+
with gr.Accordion(label=i18n("常规设置"), open=False):
|
| 961 |
+
f0method0 = gr.Radio(
|
| 962 |
+
label=i18n(
|
| 963 |
+
"选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU,rmvpe效果最好且微吃GPU"
|
| 964 |
+
),
|
| 965 |
+
choices=["pm", "harvest", "crepe", "rmvpe"]
|
| 966 |
+
if config.dml == False
|
| 967 |
+
else ["pm", "harvest", "rmvpe"],
|
| 968 |
+
value="rmvpe",
|
| 969 |
+
interactive=True,
|
| 970 |
+
)
|
| 971 |
+
filter_radius0 = gr.Slider(
|
| 972 |
+
minimum=0,
|
| 973 |
+
maximum=7,
|
| 974 |
+
label=i18n(">=3则使用对harvest音高识别的结果使用中值滤波,数值为滤波半径,使用可以削弱哑音"),
|
| 975 |
+
value=3,
|
| 976 |
+
step=1,
|
| 977 |
+
interactive=True,
|
| 978 |
+
)
|
| 979 |
+
resample_sr0 = gr.Slider(
|
| 980 |
+
minimum=0,
|
| 981 |
+
maximum=48000,
|
| 982 |
+
label=i18n("后处理重采样至最终采样率,0为不进行重采样"),
|
| 983 |
+
value=0,
|
| 984 |
+
step=1,
|
| 985 |
+
interactive=True,
|
| 986 |
+
visible=False
|
| 987 |
+
)
|
| 988 |
+
rms_mix_rate0 = gr.Slider(
|
| 989 |
+
minimum=0,
|
| 990 |
+
maximum=1,
|
| 991 |
+
label=i18n("输入源音量包络替换输出音量包络融合比例,越靠近1越使用输出包络"),
|
| 992 |
+
value=0.21,
|
| 993 |
+
interactive=True,
|
| 994 |
+
)
|
| 995 |
+
protect0 = gr.Slider(
|
| 996 |
+
minimum=0,
|
| 997 |
+
maximum=0.5,
|
| 998 |
+
label=i18n(
|
| 999 |
+
"保护清辅音和呼吸声,防止电音撕裂等artifact,拉满0.5不开启,调低加大保护力度但可能���低索引效果"
|
| 1000 |
+
),
|
| 1001 |
+
value=0.33,
|
| 1002 |
+
step=0.01,
|
| 1003 |
+
interactive=True,
|
| 1004 |
+
)
|
| 1005 |
+
file_index1 = gr.Textbox(
|
| 1006 |
+
label=i18n("特征检索库文件路径,为空则使用下拉的选择结果"),
|
| 1007 |
+
value="",
|
| 1008 |
+
interactive=True,
|
| 1009 |
+
visible=False
|
| 1010 |
+
)
|
| 1011 |
+
refresh_button.click(
|
| 1012 |
+
fn=change_choices,
|
| 1013 |
+
inputs=[],
|
| 1014 |
+
outputs=[sid0, file_index2, input_audio0],
|
| 1015 |
+
api_name="infer_refresh",
|
| 1016 |
+
)
|
| 1017 |
+
# file_big_npy1 = gr.Textbox(
|
| 1018 |
+
# label=i18n("特征文件路径"),
|
| 1019 |
+
# value="E:\\codes\py39\\vits_vc_gpu_train\\logs\\mi-test-1key\\total_fea.npy",
|
| 1020 |
+
# interactive=True,
|
| 1021 |
+
# )
|
| 1022 |
+
with gr.Row():
|
| 1023 |
+
f0_file = gr.File(label=i18n("F0曲线文件, 可选, 一行一个音高, 代替默认F0及升降调"), visible=False)
|
| 1024 |
+
with gr.Row():
|
| 1025 |
+
vc_output1 = gr.Textbox(label=i18n("输出信息"))
|
| 1026 |
+
but0.click(
|
| 1027 |
+
vc.vc_single,
|
| 1028 |
+
[
|
| 1029 |
+
spk_item,
|
| 1030 |
+
input_audio0,
|
| 1031 |
+
vc_transform0,
|
| 1032 |
+
f0_file,
|
| 1033 |
+
f0method0,
|
| 1034 |
+
file_index1,
|
| 1035 |
+
file_index2,
|
| 1036 |
+
# file_big_npy1,
|
| 1037 |
+
index_rate1,
|
| 1038 |
+
filter_radius0,
|
| 1039 |
+
resample_sr0,
|
| 1040 |
+
rms_mix_rate0,
|
| 1041 |
+
protect0,
|
| 1042 |
+
],
|
| 1043 |
+
[vc_output1, vc_output2],
|
| 1044 |
+
api_name="infer_convert",
|
| 1045 |
+
)
|
| 1046 |
+
with gr.Row():
|
| 1047 |
+
with gr.Accordion(open=False, label=i18n("批量转换, 输入待转换音频文件夹, 或上传多个音频文件, 在指定文件夹(默认opt)下输出转换的音频. ")):
|
| 1048 |
+
with gr.Row():
|
| 1049 |
+
opt_input = gr.Textbox(label=i18n("指定输出文件夹"), value="opt")
|
| 1050 |
+
vc_transform1 = gr.Number(
|
| 1051 |
+
label=i18n("变调(整数, 半音数量, 升八度12降八度-12)"), value=0
|
| 1052 |
+
)
|
| 1053 |
+
f0method1 = gr.Radio(
|
| 1054 |
+
label=i18n(
|
| 1055 |
+
"选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU,rmvpe效果最好且微吃GPU"
|
| 1056 |
+
),
|
| 1057 |
+
choices=["pm", "harvest", "crepe", "rmvpe"]
|
| 1058 |
+
if config.dml == False
|
| 1059 |
+
else ["pm", "harvest", "rmvpe"],
|
| 1060 |
+
value="pm",
|
| 1061 |
+
interactive=True,
|
| 1062 |
+
)
|
| 1063 |
+
with gr.Row():
|
| 1064 |
+
filter_radius1 = gr.Slider(
|
| 1065 |
+
minimum=0,
|
| 1066 |
+
maximum=7,
|
| 1067 |
+
label=i18n(">=3则使用对harvest音高识别的结果使用中值滤波,数值为滤波半径,使用可以削弱哑音"),
|
| 1068 |
+
value=3,
|
| 1069 |
+
step=1,
|
| 1070 |
+
interactive=True,
|
| 1071 |
+
visible=False
|
| 1072 |
+
)
|
| 1073 |
+
with gr.Row():
|
| 1074 |
+
file_index3 = gr.Textbox(
|
| 1075 |
+
label=i18n("特征检索库文件路径,为空则使用下拉的选择结果"),
|
| 1076 |
+
value="",
|
| 1077 |
+
interactive=True,
|
| 1078 |
+
visible=False
|
| 1079 |
+
)
|
| 1080 |
+
file_index4 = gr.Dropdown(
|
| 1081 |
+
label=i18n("自动检测index路径,下拉式选择(dropdown)"),
|
| 1082 |
+
choices=sorted(index_paths),
|
| 1083 |
+
interactive=True,
|
| 1084 |
+
visible=False
|
| 1085 |
+
)
|
| 1086 |
+
refresh_button.click(
|
| 1087 |
+
fn=lambda: change_choices()[1],
|
| 1088 |
+
inputs=[],
|
| 1089 |
+
outputs=file_index4,
|
| 1090 |
+
api_name="infer_refresh_batch",
|
| 1091 |
+
)
|
| 1092 |
+
# file_big_npy2 = gr.Textbox(
|
| 1093 |
+
# label=i18n("特征文件路径"),
|
| 1094 |
+
# value="E:\\codes\\py39\\vits_vc_gpu_train\\logs\\mi-test-1key\\total_fea.npy",
|
| 1095 |
+
# interactive=True,
|
| 1096 |
+
# )
|
| 1097 |
+
index_rate2 = gr.Slider(
|
| 1098 |
+
minimum=0,
|
| 1099 |
+
maximum=1,
|
| 1100 |
+
label=i18n("检索特征占比"),
|
| 1101 |
+
value=1,
|
| 1102 |
+
interactive=True,
|
| 1103 |
+
visible=False
|
| 1104 |
+
)
|
| 1105 |
+
with gr.Row():
|
| 1106 |
+
resample_sr1 = gr.Slider(
|
| 1107 |
+
minimum=0,
|
| 1108 |
+
maximum=48000,
|
| 1109 |
+
label=i18n("后处理重采样至最终采样率,0为不进行重采样"),
|
| 1110 |
+
value=0,
|
| 1111 |
+
step=1,
|
| 1112 |
+
interactive=True,
|
| 1113 |
+
visible=False
|
| 1114 |
+
)
|
| 1115 |
+
rms_mix_rate1 = gr.Slider(
|
| 1116 |
+
minimum=0,
|
| 1117 |
+
maximum=1,
|
| 1118 |
+
label=i18n("输入源音量包络替换输出音量包络融合比例,越靠近1越使用输出包络"),
|
| 1119 |
+
value=0.21,
|
| 1120 |
+
interactive=True,
|
| 1121 |
+
)
|
| 1122 |
+
protect1 = gr.Slider(
|
| 1123 |
+
minimum=0,
|
| 1124 |
+
maximum=0.5,
|
| 1125 |
+
label=i18n(
|
| 1126 |
+
"保护清辅音和呼吸声,防止电音撕裂等artifact,拉满0.5不开启,调低加大保护力度但可能降低索引效果"
|
| 1127 |
+
),
|
| 1128 |
+
value=0.33,
|
| 1129 |
+
step=0.01,
|
| 1130 |
+
interactive=True,
|
| 1131 |
+
)
|
| 1132 |
+
with gr.Row():
|
| 1133 |
+
dir_input = gr.Textbox(
|
| 1134 |
+
label=i18n("输入待处理音频文件夹路径(去文件管理器地址栏拷就行了)"),
|
| 1135 |
+
value="./audios",
|
| 1136 |
+
)
|
| 1137 |
+
inputs = gr.File(
|
| 1138 |
+
file_count="multiple", label=i18n("也可批量输入音频文件, 二选一, 优先读文件夹")
|
| 1139 |
+
)
|
| 1140 |
+
with gr.Row():
|
| 1141 |
+
format1 = gr.Radio(
|
| 1142 |
+
label=i18n("导出文件格式"),
|
| 1143 |
+
choices=["wav", "flac", "mp3", "m4a"],
|
| 1144 |
+
value="wav",
|
| 1145 |
+
interactive=True,
|
| 1146 |
+
)
|
| 1147 |
+
but1 = gr.Button(i18n("转换"), variant="primary")
|
| 1148 |
+
vc_output3 = gr.Textbox(label=i18n("输出信息"))
|
| 1149 |
+
but1.click(
|
| 1150 |
+
vc.vc_multi,
|
| 1151 |
+
[
|
| 1152 |
+
spk_item,
|
| 1153 |
+
dir_input,
|
| 1154 |
+
opt_input,
|
| 1155 |
+
inputs,
|
| 1156 |
+
vc_transform1,
|
| 1157 |
+
f0method1,
|
| 1158 |
+
file_index1,
|
| 1159 |
+
file_index2,
|
| 1160 |
+
# file_big_npy2,
|
| 1161 |
+
index_rate1,
|
| 1162 |
+
filter_radius1,
|
| 1163 |
+
resample_sr1,
|
| 1164 |
+
rms_mix_rate1,
|
| 1165 |
+
protect1,
|
| 1166 |
+
format1,
|
| 1167 |
+
],
|
| 1168 |
+
[vc_output3],
|
| 1169 |
+
api_name="infer_convert_batch",
|
| 1170 |
+
)
|
| 1171 |
+
sid0.change(
|
| 1172 |
+
fn=vc.get_vc,
|
| 1173 |
+
inputs=[sid0, protect0, protect1],
|
| 1174 |
+
outputs=[spk_item, protect0, protect1, file_index2, file_index4],
|
| 1175 |
+
)
|
| 1176 |
+
with gr.TabItem("Download Model"):
|
| 1177 |
+
with gr.Row():
|
| 1178 |
+
url=gr.Textbox(label="Enter the URL to the Model:")
|
| 1179 |
+
with gr.Row():
|
| 1180 |
+
model = gr.Textbox(label="Name your model:")
|
| 1181 |
+
download_button=gr.Button("Download")
|
| 1182 |
+
with gr.Row():
|
| 1183 |
+
status_bar=gr.Textbox(label="")
|
| 1184 |
+
download_button.click(fn=download_from_url, inputs=[url, model], outputs=[status_bar])
|
| 1185 |
+
with gr.Row():
|
| 1186 |
+
gr.Markdown(
|
| 1187 |
+
"""
|
| 1188 |
+
❤️ If you use this and like it, help me keep it.❤️
|
| 1189 |
+
https://paypal.me/lesantillan
|
| 1190 |
+
"""
|
| 1191 |
+
)
|
| 1192 |
+
with gr.TabItem(i18n("训练")):
|
| 1193 |
+
with gr.Row():
|
| 1194 |
+
with gr.Column():
|
| 1195 |
+
exp_dir1 = gr.Textbox(label=i18n("输入实验名"), value="My-Voice")
|
| 1196 |
+
np7 = gr.Slider(
|
| 1197 |
+
minimum=0,
|
| 1198 |
+
maximum=config.n_cpu,
|
| 1199 |
+
step=1,
|
| 1200 |
+
label=i18n("提取音高和处理数据使用的CPU进程数"),
|
| 1201 |
+
value=int(np.ceil(config.n_cpu / 1.5)),
|
| 1202 |
+
interactive=True,
|
| 1203 |
+
)
|
| 1204 |
+
sr2 = gr.Radio(
|
| 1205 |
+
label=i18n("目标采样率"),
|
| 1206 |
+
choices=["40k", "48k"],
|
| 1207 |
+
value="40k",
|
| 1208 |
+
interactive=True,
|
| 1209 |
+
visible=False
|
| 1210 |
+
)
|
| 1211 |
+
if_f0_3 = gr.Radio(
|
| 1212 |
+
label=i18n("模型是否带音高指导(唱歌一定要, 语音可以不要)"),
|
| 1213 |
+
choices=[True, False],
|
| 1214 |
+
value=True,
|
| 1215 |
+
interactive=True,
|
| 1216 |
+
visible=False
|
| 1217 |
+
)
|
| 1218 |
+
version19 = gr.Radio(
|
| 1219 |
+
label=i18n("版本"),
|
| 1220 |
+
choices=["v1", "v2"],
|
| 1221 |
+
value="v2",
|
| 1222 |
+
interactive=True,
|
| 1223 |
+
visible=False,
|
| 1224 |
+
)
|
| 1225 |
+
trainset_dir4 = gr.Textbox(
|
| 1226 |
+
label=i18n("输入训练文件夹路径"), value='./dataset/'+datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
|
| 1227 |
+
)
|
| 1228 |
+
easy_uploader = gr.Files(label=i18n("也可批量输入音频文件, 二选一, 优先读文件夹"),file_types=['audio'])
|
| 1229 |
+
but1 = gr.Button(i18n("处理数据"), variant="primary")
|
| 1230 |
+
info1 = gr.Textbox(label=i18n("输出信息"), value="")
|
| 1231 |
+
easy_uploader.upload(fn=upload_to_dataset, inputs=[easy_uploader, trainset_dir4], outputs=[info1, trainset_dir4])
|
| 1232 |
+
gpus6 = gr.Textbox(
|
| 1233 |
+
label=i18n("以-分隔输入使用的卡号, 例如 0-1-2 使用卡0和卡1和卡2"),
|
| 1234 |
+
value=gpus,
|
| 1235 |
+
interactive=True,
|
| 1236 |
+
visible=F0GPUVisible,
|
| 1237 |
+
)
|
| 1238 |
+
gpu_info9 = gr.Textbox(
|
| 1239 |
+
label=i18n("显卡信息"), value=gpu_info, visible=F0GPUVisible
|
| 1240 |
+
)
|
| 1241 |
+
spk_id5 = gr.Slider(
|
| 1242 |
+
minimum=0,
|
| 1243 |
+
maximum=4,
|
| 1244 |
+
step=1,
|
| 1245 |
+
label=i18n("请指定说话人id"),
|
| 1246 |
+
value=0,
|
| 1247 |
+
interactive=True,
|
| 1248 |
+
visible=False
|
| 1249 |
+
)
|
| 1250 |
+
but1.click(
|
| 1251 |
+
preprocess_dataset,
|
| 1252 |
+
[trainset_dir4, exp_dir1, sr2, np7],
|
| 1253 |
+
[info1],
|
| 1254 |
+
api_name="train_preprocess",
|
| 1255 |
+
)
|
| 1256 |
+
with gr.Column():
|
| 1257 |
+
f0method8 = gr.Radio(
|
| 1258 |
+
label=i18n(
|
| 1259 |
+
"选择音高提取算法:输入歌声可用pm提速,高质量语音但CPU差可用dio提速,harvest质量更好但慢,rmvpe效果最好且微吃CPU/GPU"
|
| 1260 |
+
),
|
| 1261 |
+
choices=["pm", "harvest", "dio", "rmvpe", "rmvpe_gpu"],
|
| 1262 |
+
value="rmvpe_gpu",
|
| 1263 |
+
interactive=True,
|
| 1264 |
+
)
|
| 1265 |
+
gpus_rmvpe = gr.Textbox(
|
| 1266 |
+
label=i18n(
|
| 1267 |
+
"rmvpe卡号配置:以-分隔输入使用的不同进程卡号,例如0-0-1使用在卡0上跑2个进程并在卡1上跑1个进程"
|
| 1268 |
+
),
|
| 1269 |
+
value="%s-%s" % (gpus, gpus),
|
| 1270 |
+
interactive=True,
|
| 1271 |
+
visible=F0GPUVisible,
|
| 1272 |
+
)
|
| 1273 |
+
but2 = gr.Button(i18n("特征提取"), variant="primary")
|
| 1274 |
+
info2 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8)
|
| 1275 |
+
f0method8.change(
|
| 1276 |
+
fn=change_f0_method,
|
| 1277 |
+
inputs=[f0method8],
|
| 1278 |
+
outputs=[gpus_rmvpe],
|
| 1279 |
+
)
|
| 1280 |
+
but2.click(
|
| 1281 |
+
extract_f0_feature,
|
| 1282 |
+
[
|
| 1283 |
+
gpus6,
|
| 1284 |
+
np7,
|
| 1285 |
+
f0method8,
|
| 1286 |
+
if_f0_3,
|
| 1287 |
+
exp_dir1,
|
| 1288 |
+
version19,
|
| 1289 |
+
gpus_rmvpe,
|
| 1290 |
+
],
|
| 1291 |
+
[info2],
|
| 1292 |
+
api_name="train_extract_f0_feature",
|
| 1293 |
+
)
|
| 1294 |
+
with gr.Column():
|
| 1295 |
+
total_epoch11 = gr.Slider(
|
| 1296 |
+
minimum=2,
|
| 1297 |
+
maximum=1000,
|
| 1298 |
+
step=1,
|
| 1299 |
+
label=i18n("总训练轮数total_epoch"),
|
| 1300 |
+
value=150,
|
| 1301 |
+
interactive=True,
|
| 1302 |
+
)
|
| 1303 |
+
gpus16 = gr.Textbox(
|
| 1304 |
+
label=i18n("以-分隔输入使用的卡号, 例如 0-1-2 使用卡0和卡1和卡2"),
|
| 1305 |
+
value="0",
|
| 1306 |
+
interactive=True,
|
| 1307 |
+
visible=True
|
| 1308 |
+
)
|
| 1309 |
+
but3 = gr.Button(i18n("训练模型"), variant="primary")
|
| 1310 |
+
but4 = gr.Button(i18n("训练特征索引"), variant="primary")
|
| 1311 |
+
info3 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=10)
|
| 1312 |
+
with gr.Accordion(label=i18n("常规设置"), open=False):
|
| 1313 |
+
save_epoch10 = gr.Slider(
|
| 1314 |
+
minimum=1,
|
| 1315 |
+
maximum=50,
|
| 1316 |
+
step=1,
|
| 1317 |
+
label=i18n("保存频率save_every_epoch"),
|
| 1318 |
+
value=25,
|
| 1319 |
+
interactive=True,
|
| 1320 |
+
)
|
| 1321 |
+
batch_size12 = gr.Slider(
|
| 1322 |
+
minimum=1,
|
| 1323 |
+
maximum=40,
|
| 1324 |
+
step=1,
|
| 1325 |
+
label=i18n("每张显卡的batch_size"),
|
| 1326 |
+
value=default_batch_size,
|
| 1327 |
+
interactive=True,
|
| 1328 |
+
)
|
| 1329 |
+
if_save_latest13 = gr.Radio(
|
| 1330 |
+
label=i18n("是否仅保存最新的ckpt文件以节省硬盘空间"),
|
| 1331 |
+
choices=[i18n("是"), i18n("否")],
|
| 1332 |
+
value=i18n("是"),
|
| 1333 |
+
interactive=True,
|
| 1334 |
+
visible=False
|
| 1335 |
+
)
|
| 1336 |
+
if_cache_gpu17 = gr.Radio(
|
| 1337 |
+
label=i18n(
|
| 1338 |
+
"是否缓存所有训练集至显存. 10min以下小数据可缓存以加速训练, 大数据缓存会炸显存也加不了多少速"
|
| 1339 |
+
),
|
| 1340 |
+
choices=[i18n("是"), i18n("否")],
|
| 1341 |
+
value=i18n("否"),
|
| 1342 |
+
interactive=True,
|
| 1343 |
+
)
|
| 1344 |
+
if_save_every_weights18 = gr.Radio(
|
| 1345 |
+
label=i18n("是否在每次保存时间点将最终小模型保存至weights文件夹"),
|
| 1346 |
+
choices=[i18n("是"), i18n("否")],
|
| 1347 |
+
value=i18n("是"),
|
| 1348 |
+
interactive=True,
|
| 1349 |
+
)
|
| 1350 |
+
with gr.Row():
|
| 1351 |
+
download_model = gr.Button('5.Download Model')
|
| 1352 |
+
with gr.Row():
|
| 1353 |
+
model_files = gr.Files(label='Your Model and Index file can be downloaded here:')
|
| 1354 |
+
download_model.click(fn=download_model_files, inputs=[exp_dir1], outputs=[model_files, info3])
|
| 1355 |
+
with gr.Row():
|
| 1356 |
+
pretrained_G14 = gr.Textbox(
|
| 1357 |
+
label=i18n("加载预训练底模G路径"),
|
| 1358 |
+
value="assets/pretrained_v2/f0G40k.pth",
|
| 1359 |
+
interactive=True,
|
| 1360 |
+
visible=False
|
| 1361 |
+
)
|
| 1362 |
+
pretrained_D15 = gr.Textbox(
|
| 1363 |
+
label=i18n("加载预训练底模D路径"),
|
| 1364 |
+
value="assets/pretrained_v2/f0D40k.pth",
|
| 1365 |
+
interactive=True,
|
| 1366 |
+
visible=False
|
| 1367 |
+
)
|
| 1368 |
+
sr2.change(
|
| 1369 |
+
change_sr2,
|
| 1370 |
+
[sr2, if_f0_3, version19],
|
| 1371 |
+
[pretrained_G14, pretrained_D15],
|
| 1372 |
+
)
|
| 1373 |
+
version19.change(
|
| 1374 |
+
change_version19,
|
| 1375 |
+
[sr2, if_f0_3, version19],
|
| 1376 |
+
[pretrained_G14, pretrained_D15, sr2],
|
| 1377 |
+
)
|
| 1378 |
+
if_f0_3.change(
|
| 1379 |
+
change_f0,
|
| 1380 |
+
[if_f0_3, sr2, version19],
|
| 1381 |
+
[f0method8, pretrained_G14, pretrained_D15],
|
| 1382 |
+
)
|
| 1383 |
+
with gr.Row():
|
| 1384 |
+
but5 = gr.Button(i18n("一键训练"), variant="primary", visible=False)
|
| 1385 |
+
but3.click(
|
| 1386 |
+
click_train,
|
| 1387 |
+
[
|
| 1388 |
+
exp_dir1,
|
| 1389 |
+
sr2,
|
| 1390 |
+
if_f0_3,
|
| 1391 |
+
spk_id5,
|
| 1392 |
+
save_epoch10,
|
| 1393 |
+
total_epoch11,
|
| 1394 |
+
batch_size12,
|
| 1395 |
+
if_save_latest13,
|
| 1396 |
+
pretrained_G14,
|
| 1397 |
+
pretrained_D15,
|
| 1398 |
+
gpus16,
|
| 1399 |
+
if_cache_gpu17,
|
| 1400 |
+
if_save_every_weights18,
|
| 1401 |
+
version19,
|
| 1402 |
+
],
|
| 1403 |
+
info3,
|
| 1404 |
+
api_name="train_start",
|
| 1405 |
+
)
|
| 1406 |
+
but4.click(train_index, [exp_dir1, version19], info3)
|
| 1407 |
+
but5.click(
|
| 1408 |
+
train1key,
|
| 1409 |
+
[
|
| 1410 |
+
exp_dir1,
|
| 1411 |
+
sr2,
|
| 1412 |
+
if_f0_3,
|
| 1413 |
+
trainset_dir4,
|
| 1414 |
+
spk_id5,
|
| 1415 |
+
np7,
|
| 1416 |
+
f0method8,
|
| 1417 |
+
save_epoch10,
|
| 1418 |
+
total_epoch11,
|
| 1419 |
+
batch_size12,
|
| 1420 |
+
if_save_latest13,
|
| 1421 |
+
pretrained_G14,
|
| 1422 |
+
pretrained_D15,
|
| 1423 |
+
gpus16,
|
| 1424 |
+
if_cache_gpu17,
|
| 1425 |
+
if_save_every_weights18,
|
| 1426 |
+
version19,
|
| 1427 |
+
gpus_rmvpe,
|
| 1428 |
+
],
|
| 1429 |
+
info3,
|
| 1430 |
+
api_name="train_start_all",
|
| 1431 |
+
)
|
| 1432 |
+
|
| 1433 |
+
if config.iscolab:
|
| 1434 |
+
app.queue(concurrency_count=511, max_size=1022).launch(share=True)
|
| 1435 |
+
else:
|
| 1436 |
+
app.queue(concurrency_count=511, max_size=1022).launch(
|
| 1437 |
+
server_name="0.0.0.0",
|
| 1438 |
+
inbrowser=not config.noautoopen,
|
| 1439 |
+
server_port=config.listen_port,
|
| 1440 |
+
quiet=True,
|
| 1441 |
+
)
|
assets/hubert/.gitignore
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*
|
| 2 |
+
!.gitignore
|
assets/hubert/hubert_base.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f54b40fd2802423a5643779c4861af1e9ee9c1564dc9d32f54f20b5ffba7db96
|
| 3 |
+
size 189507909
|
assets/pretrained/.gitignore
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*
|
| 2 |
+
!.gitignore
|
assets/pretrained_v2/.gitignore
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*
|
| 2 |
+
!.gitignore
|
assets/pretrained_v2/D40k.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:471378e894e7191f89a94eda8288c5947b16bbe0b10c3f1f17efdb7a1d998242
|
| 3 |
+
size 142875703
|
assets/pretrained_v2/G40k.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a3843da7fde33db1dab176146c70d6c2df06eafe9457f4e3aa10024e9c6a4b69
|
| 3 |
+
size 72959671
|
assets/pretrained_v2/f0D40k.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6b6ab091e70801b28e3f41f335f2fc5f3f35c75b39ae2628d419644ec2b0fa09
|
| 3 |
+
size 142875703
|
assets/pretrained_v2/f0G40k.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3b2c44035e782c4b14ddc0bede9e2f4a724d025cd073f736d4f43708453adfcb
|
| 3 |
+
size 73106273
|
assets/rmvpe/.gitignore
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*
|
| 2 |
+
!.gitignore
|
assets/rmvpe/rmvpe.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a5ed4719f59085d1affc5d81354c70828c740584f2d24e782523345a6a278962
|
| 3 |
+
size 181189687
|
assets/uvr5_weights/.gitignore
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*
|
| 2 |
+
!.gitignore
|
assets/weights/.gitignore
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*
|
| 2 |
+
!.gitignore
|
assets/weights/MJV2.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a3554bbb4916e7bf54526ff7eb63f8016b679c6a81074c63e28778c86dbb5cba
|
| 3 |
+
size 55192782
|
assets/weights/MJV2_e100_s100.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6ad1ad8e0e934ddaea5c2c0df2bc520c567a7dceba3e65c23ddd6feed2ae0f46
|
| 3 |
+
size 55226492
|
assets/weights/MJV2_e120_s120.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e9f9d7d649161f25e8ac54a559aaa262682b1bea7e1840961ef0e0436dd1b361
|
| 3 |
+
size 55226492
|
assets/weights/MJV2_e140_s140.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5e7f3f9fb6a07ecf1b63de606c355068705f21445c1b6fc818c779d6312b854d
|
| 3 |
+
size 55226492
|
assets/weights/MJV2_e160_s160.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:903217c53b53a4700561abab0cfea198ebfaa816875dfbddc1b334771167ea71
|
| 3 |
+
size 55226492
|
assets/weights/MJV2_e180_s180.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5821ffc7d73a66a125a1bad3a3d9f7d51aff383a1a665358b1743ac6e98b5efe
|
| 3 |
+
size 55226492
|
assets/weights/MJV2_e200_s200.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2c6fc3ffaf1ebb7473035dcd9f5ac90102fe00b79dd7fd03bd22f6530aaa528b
|
| 3 |
+
size 55226492
|
assets/weights/MJV2_e20_s20.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fe47ad05b191636d760d7cd6d4831e6f0fde820260c789a1842aff12c32f49c3
|
| 3 |
+
size 55225574
|
assets/weights/MJV2_e220_s220.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:76874e3abd5e7e7529fc853ee5169e4e0cbf923a6103105e27bf604df5369011
|
| 3 |
+
size 55226492
|
assets/weights/MJV2_e240_s240.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f6be8f2d881f78809757a101136667d29106d10fc039fc95304ca15bffa23fdd
|
| 3 |
+
size 55226492
|
assets/weights/MJV2_e260_s260.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:22430c9230f0a2b7a6c18226790dcf1ded2bee9377c44a0b43027535af9004e8
|
| 3 |
+
size 55226492
|
assets/weights/MJV2_e280_s280.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5469a8cefdf4eb1a131994a355bbfb000e728f7ea776d84b02165815a490d5df
|
| 3 |
+
size 55226492
|
assets/weights/MJV2_e300_s300.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0330a419b71671ec97cd92aea9445177f937b67b67c0af5fec5081a440489282
|
| 3 |
+
size 55226492
|
assets/weights/MJV2_e40_s40.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:91b9ef9001966ca8c46fb32b2c522e9c6aba9034e5c070be3e3e87fa1d96608b
|
| 3 |
+
size 55225574
|
assets/weights/MJV2_e60_s60.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8d8f64fe3cd9e479695e7be77560888ef23685c9e9df9beb1826589c3209da00
|
| 3 |
+
size 55225574
|
assets/weights/MJV2_e80_s80.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:38c7fbb917e72379212491ab0b0b5685896f262aa58e38f212a63603c0622874
|
| 3 |
+
size 55225574
|
audios/somegirl.mp3
ADDED
|
Binary file (32.2 kB). View file
|
|
|
audios/someguy.mp3
ADDED
|
Binary file (24.9 kB). View file
|
|
|
audios/unachica.mp3
ADDED
|
Binary file (36.4 kB). View file
|
|
|
audios/unchico.mp3
ADDED
|
Binary file (35.9 kB). View file
|
|
|
configs/__pycache__/config.cpython-310.pyc
ADDED
|
Binary file (5.18 kB). View file
|
|
|