# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved. import torch try: print("calling import flash_attn_interface") import flash_attn_interface def is_hopper_gpu(): print("is_hopper_gpu(): checking if not torch.cuda.is_available()") if not torch.cuda.is_available(): print("is_hopper_gpu(): turch.cuda is not available, so this is not Hopper GPU") return False device_name = torch.cuda.get_device_name(0).lower() print(f"is_hopper_gpu(): device_name = {device_name}") return "h100" in device_name or "hopper" in device_name FLASH_ATTN_3_AVAILABLE = is_hopper_gpu() except ModuleNotFoundError as e: print(f"Got a ModuleNotFoundError for Flash Attention 3: {e}") FLASH_ATTN_3_AVAILABLE = False print(f"FLASH_ATTN_3_AVAILABLE ? -> {FLASH_ATTN_3_AVAILABLE}") try: print("calling import flash_attn") import flash_attn FLASH_ATTN_2_AVAILABLE = True except ModuleNotFoundError as e: print(f"Got a ModuleNotFoundError for Flash Attention 2: {e}") FLASH_ATTN_2_AVAILABLE = False print(f"FLASH_ATTN_2_AVAILABLE ? -> {FLASH_ATTN_2_AVAILABLE}") import warnings __all__ = [ 'flash_attention', 'attention', ] def flash_attention( q, k, v, q_lens=None, k_lens=None, dropout_p=0., softmax_scale=None, q_scale=None, causal=False, window_size=(-1, -1), deterministic=False, dtype=torch.bfloat16, version=None, ): """ q: [B, Lq, Nq, C1]. k: [B, Lk, Nk, C1]. v: [B, Lk, Nk, C2]. Nq must be divisible by Nk. q_lens: [B]. k_lens: [B]. dropout_p: float. Dropout probability. softmax_scale: float. The scaling of QK^T before applying softmax. causal: bool. Whether to apply causal attention mask. window_size: (left right). If not (-1, -1), apply sliding window local attention. deterministic: bool. If True, slightly slower and uses more memory. dtype: torch.dtype. Apply when dtype of q/k/v is not float16/bfloat16. """ half_dtypes = (torch.float16, torch.bfloat16) assert dtype in half_dtypes assert q.device.type == 'cuda' and q.size(-1) <= 256 # params b, lq, lk, out_dtype = q.size(0), q.size(1), k.size(1), q.dtype def half(x): return x if x.dtype in half_dtypes else x.to(dtype) # preprocess query if q_lens is None: q = half(q.flatten(0, 1)) q_lens = torch.tensor( [lq] * b, dtype=torch.int32).to( device=q.device, non_blocking=True) else: q = half(torch.cat([u[:v] for u, v in zip(q, q_lens)])) # preprocess key, value if k_lens is None: k = half(k.flatten(0, 1)) v = half(v.flatten(0, 1)) k_lens = torch.tensor( [lk] * b, dtype=torch.int32).to( device=k.device, non_blocking=True) else: k = half(torch.cat([u[:v] for u, v in zip(k, k_lens)])) v = half(torch.cat([u[:v] for u, v in zip(v, k_lens)])) q = q.to(v.dtype) k = k.to(v.dtype) if q_scale is not None: q = q * q_scale if version is not None and version == 3 and not FLASH_ATTN_3_AVAILABLE: warnings.warn( 'Flash attention 3 is not available, use flash attention 2 instead.' ) # apply attention if (version is None or version == 3) and FLASH_ATTN_3_AVAILABLE: # Note: dropout_p, window_size are not supported in FA3 now. x = flash_attn_interface.flash_attn_varlen_func( q=q, k=k, v=v, cu_seqlens_q=torch.cat([q_lens.new_zeros([1]), q_lens]).cumsum( 0, dtype=torch.int32).to(q.device, non_blocking=True), cu_seqlens_k=torch.cat([k_lens.new_zeros([1]), k_lens]).cumsum( 0, dtype=torch.int32).to(q.device, non_blocking=True), max_seqlen_q=lq, max_seqlen_k=lk, softmax_scale=softmax_scale, causal=causal, deterministic=deterministic)[0].unflatten(0, (b, lq)) elif FLASH_ATTN_2_AVAILABLE: x = flash_attn.flash_attn_varlen_func( q=q, k=k, v=v, cu_seqlens_q=torch.cat([q_lens.new_zeros([1]), q_lens]).cumsum( 0, dtype=torch.int32).to(q.device, non_blocking=True), cu_seqlens_k=torch.cat([k_lens.new_zeros([1]), k_lens]).cumsum( 0, dtype=torch.int32).to(q.device, non_blocking=True), max_seqlen_q=lq, max_seqlen_k=lk, dropout_p=dropout_p, softmax_scale=softmax_scale, causal=causal, window_size=window_size, deterministic=deterministic).unflatten(0, (b, lq)) else: # Fallback to PyTorch's scaled_dot_product_attention when flash attention is not available if q_lens is not None or k_lens is not None: warnings.warn( 'Padding mask is disabled when using scaled_dot_product_attention. It can have a significant impact on performance.' ) print(f"DEBUG: Input shapes - q: {q.shape}, k: {k.shape}, v: {v.shape}") print(f"DEBUG: batch size: {b}, lq: {lq}, lk: {lk}") # Input format: q, k, v are already flattened to [total_seq_len, num_heads, head_dim] # Need to reshape to [B, num_heads, seq_len, head_dim] for scaled_dot_product_attention # Unflatten and transpose: [total_seq_len, H, C] -> [B, L, H, C] -> [B, H, L, C] q_reshaped = q.unflatten(0, (b, lq)).transpose(1, 2) k_reshaped = k.unflatten(0, (b, lk)).transpose(1, 2) v_reshaped = v.unflatten(0, (b, lk)).transpose(1, 2) print(f"DEBUG: After reshape - q: {q_reshaped.shape}, k: {k_reshaped.shape}, v: {v_reshaped.shape}") x = torch.nn.functional.scaled_dot_product_attention( q_reshaped, k_reshaped, v_reshaped, attn_mask=None, is_causal=causal, dropout_p=dropout_p) print(f"DEBUG: After attention - x: {x.shape}") # Transpose back: [B, H, L, C] -> [B, L, H, C] x = x.transpose(1, 2) print(f"DEBUG: After transpose - x: {x.shape}") # Flatten to [B*L, H, C] to match flash attention output format x = x.flatten(0, 1) print(f"DEBUG: Final output shape - x: {x.shape}") # output return x.type(out_dtype) def attention( q, k, v, q_lens=None, k_lens=None, dropout_p=0., softmax_scale=None, q_scale=None, causal=False, window_size=(-1, -1), deterministic=False, dtype=torch.bfloat16, fa_version=None, ): if FLASH_ATTN_2_AVAILABLE or FLASH_ATTN_3_AVAILABLE: return flash_attention( q=q, k=k, v=v, q_lens=q_lens, k_lens=k_lens, dropout_p=dropout_p, softmax_scale=softmax_scale, q_scale=q_scale, causal=causal, window_size=window_size, deterministic=deterministic, dtype=dtype, version=fa_version, ) else: if q_lens is not None or k_lens is not None: warnings.warn( 'Padding mask is disabled when using scaled_dot_product_attention. It can have a significant impact on performance.' ) attn_mask = None q = q.transpose(1, 2).to(dtype) k = k.transpose(1, 2).to(dtype) v = v.transpose(1, 2).to(dtype) out = torch.nn.functional.scaled_dot_product_attention( q, k, v, attn_mask=attn_mask, is_causal=causal, dropout_p=dropout_p) out = out.transpose(1, 2).contiguous() return out