import subprocess # not sure why it works in the original space but says "pip not found" in mine #subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) from huggingface_hub import snapshot_download, hf_hub_download snapshot_download( repo_id="Wan-AI/Wan2.1-T2V-1.3B", local_dir="wan_models/Wan2.1-T2V-1.3B", local_dir_use_symlinks=False, resume_download=True, repo_type="model" ) hf_hub_download( repo_id="gdhe17/Self-Forcing", filename="checkpoints/self_forcing_dmd.pt", local_dir=".", local_dir_use_symlinks=False ) import os import re import random import argparse import hashlib import urllib.request import time from PIL import Image import torch import gradio as gr from omegaconf import OmegaConf from tqdm import tqdm import imageio import av import uuid from pipeline import CausalInferencePipeline from demo_utils.constant import ZERO_VAE_CACHE from demo_utils.vae_block3 import VAEDecoderWrapper from utils.wan_wrapper import WanDiffusionWrapper, WanTextEncoder from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM #, BitsAndBytesConfig import numpy as np device = "cuda" if torch.cuda.is_available() else "cpu" # --- Argument Parsing --- parser = argparse.ArgumentParser(description="Gradio Demo for Self-Forcing with Frame Streaming") parser.add_argument('--port', type=int, default=7860, help="Port to run the Gradio app on.") parser.add_argument('--host', type=str, default='0.0.0.0', help="Host to bind the Gradio app to.") parser.add_argument("--checkpoint_path", type=str, default='./checkpoints/self_forcing_dmd.pt', help="Path to the model checkpoint.") parser.add_argument("--config_path", type=str, default='./configs/self_forcing_dmd.yaml', help="Path to the model config.") parser.add_argument('--share', action='store_true', help="Create a public Gradio link.") parser.add_argument('--trt', action='store_true', help="Use TensorRT optimized VAE decoder.") parser.add_argument('--fps', type=float, default=15.0, help="Playback FPS for frame streaming.") args = parser.parse_args() gpu = "cuda" try: config = OmegaConf.load(args.config_path) default_config = OmegaConf.load("configs/default_config.yaml") config = OmegaConf.merge(default_config, config) except FileNotFoundError as e: print(f"Error loading config file: {e}\n. Please ensure config files are in the correct path.") exit(1) # Initialize Models print("Initializing models...") text_encoder = WanTextEncoder() transformer = WanDiffusionWrapper(is_causal=True) try: state_dict = torch.load(args.checkpoint_path, map_location="cpu") transformer.load_state_dict(state_dict.get('generator_ema', state_dict.get('generator'))) except FileNotFoundError as e: print(f"Error loading checkpoint: {e}\nPlease ensure the checkpoint '{args.checkpoint_path}' exists.") exit(1) text_encoder.eval().to(dtype=torch.float16).requires_grad_(False) transformer.eval().to(dtype=torch.float16).requires_grad_(False) text_encoder.to(gpu) transformer.to(gpu) APP_STATE = { "torch_compile_applied": False, "fp8_applied": False, "current_use_taehv": False, "current_vae_decoder": None, } def frames_to_ts_file(frames, filepath, fps = 15): """ Convert frames directly to .ts file using PyAV. Args: frames: List of numpy arrays (HWC, RGB, uint8) filepath: Output file path fps: Frames per second Returns: The filepath of the created file """ if not frames: return filepath height, width = frames[0].shape[:2] # Create container for MPEG-TS format container = av.open(filepath, mode='w', format='mpegts') # Add video stream with optimized settings for streaming stream = container.add_stream('h264', rate=fps) stream.width = width stream.height = height stream.pix_fmt = 'yuv420p' # Optimize for low latency streaming stream.options = { 'preset': 'ultrafast', 'tune': 'zerolatency', 'crf': '23', 'profile': 'baseline', 'level': '3.0' } try: for frame_np in frames: frame = av.VideoFrame.from_ndarray(frame_np, format='rgb24') frame = frame.reformat(format=stream.pix_fmt) for packet in stream.encode(frame): container.mux(packet) for packet in stream.encode(): container.mux(packet) finally: container.close() return filepath def initialize_vae_decoder(use_taehv=False, use_trt=False): if use_trt: from demo_utils.vae import VAETRTWrapper print("Initializing TensorRT VAE Decoder...") vae_decoder = VAETRTWrapper() APP_STATE["current_use_taehv"] = False elif use_taehv: print("Initializing TAEHV VAE Decoder...") from demo_utils.taehv import TAEHV taehv_checkpoint_path = "checkpoints/taew2_1.pth" if not os.path.exists(taehv_checkpoint_path): print(f"Downloading TAEHV checkpoint to {taehv_checkpoint_path}...") os.makedirs("checkpoints", exist_ok=True) download_url = "https://github.com/madebyollin/taehv/raw/main/taew2_1.pth" try: urllib.request.urlretrieve(download_url, taehv_checkpoint_path) except Exception as e: raise RuntimeError(f"Failed to download taew2_1.pth: {e}") class DotDict(dict): __getattr__ = dict.get class TAEHVDiffusersWrapper(torch.nn.Module): def __init__(self): super().__init__() self.dtype = torch.float16 self.taehv = TAEHV(checkpoint_path=taehv_checkpoint_path).to(self.dtype) self.config = DotDict(scaling_factor=1.0) def decode(self, latents, return_dict=None): return self.taehv.decode_video(latents, parallel=not LOW_MEMORY).mul_(2).sub_(1) vae_decoder = TAEHVDiffusersWrapper() APP_STATE["current_use_taehv"] = True else: print("Initializing Default VAE Decoder...") vae_decoder = VAEDecoderWrapper() try: vae_state_dict = torch.load('wan_models/Wan2.1-T2V-1.3B/Wan2.1_VAE.pth', map_location="cpu") decoder_state_dict = {k: v for k, v in vae_state_dict.items() if 'decoder.' in k or 'conv2' in k} vae_decoder.load_state_dict(decoder_state_dict) except FileNotFoundError: print("Warning: Default VAE weights not found.") APP_STATE["current_use_taehv"] = False vae_decoder.eval().to(dtype=torch.float16).requires_grad_(False).to(gpu) APP_STATE["current_vae_decoder"] = vae_decoder print(f"✅ VAE decoder initialized: {'TAEHV' if use_taehv else 'Default VAE'}") # Initialize with default VAE initialize_vae_decoder(use_taehv=False, use_trt=args.trt) pipeline = CausalInferencePipeline( config, device=gpu, generator=transformer, text_encoder=text_encoder, vae=APP_STATE["current_vae_decoder"] ) pipeline.to(dtype=torch.float16).to(gpu) @torch.no_grad() def video_generation_handler_streaming(prompt, seed=42, fps=15): """ Generator function that yields .ts video chunks using PyAV for streaming. Now optimized for block-based processing. """ if seed == -1: seed = random.randint(0, 2**32 - 1) print(f"🎬 Starting PyAV streaming: '{prompt}', seed: {seed}") # Setup conditional_dict = text_encoder(text_prompts=[prompt]) for key, value in conditional_dict.items(): conditional_dict[key] = value.to(dtype=torch.float16) rnd = torch.Generator(gpu).manual_seed(int(seed)) pipeline._initialize_kv_cache(1, torch.float16, device=gpu) pipeline._initialize_crossattn_cache(1, torch.float16, device=gpu) noise = torch.randn([1, 21, 16, 60, 104], device=gpu, dtype=torch.float16, generator=rnd) vae_cache, latents_cache = None, None if not APP_STATE["current_use_taehv"] and not args.trt: vae_cache = [c.to(device=gpu, dtype=torch.float16) for c in ZERO_VAE_CACHE] num_blocks = 7 current_start_frame = 0 all_num_frames = [pipeline.num_frame_per_block] * num_blocks total_frames_yielded = 0 # Ensure temp directory exists os.makedirs("gradio_tmp", exist_ok=True) # Generation loop for idx, current_num_frames in enumerate(all_num_frames): print(f"📦 Processing block {idx+1}/{num_blocks}") noisy_input = noise[:, current_start_frame : current_start_frame + current_num_frames] # Denoising steps for step_idx, current_timestep in enumerate(pipeline.denoising_step_list): timestep = torch.ones([1, current_num_frames], device=noise.device, dtype=torch.int64) * current_timestep _, denoised_pred = pipeline.generator( noisy_image_or_video=noisy_input, conditional_dict=conditional_dict, timestep=timestep, kv_cache=pipeline.kv_cache1, crossattn_cache=pipeline.crossattn_cache, current_start=current_start_frame * pipeline.frame_seq_length ) if step_idx < len(pipeline.denoising_step_list) - 1: next_timestep = pipeline.denoising_step_list[step_idx + 1] noisy_input = pipeline.scheduler.add_noise( denoised_pred.flatten(0, 1), torch.randn_like(denoised_pred.flatten(0, 1)), next_timestep * torch.ones([1 * current_num_frames], device=noise.device, dtype=torch.long) ).unflatten(0, denoised_pred.shape[:2]) if idx < len(all_num_frames) - 1: pipeline.generator( noisy_image_or_video=denoised_pred, conditional_dict=conditional_dict, timestep=torch.zeros_like(timestep), kv_cache=pipeline.kv_cache1, crossattn_cache=pipeline.crossattn_cache, current_start=current_start_frame * pipeline.frame_seq_length, ) # Decode to pixels if args.trt: pixels, vae_cache = pipeline.vae.forward(denoised_pred.half(), *vae_cache) elif APP_STATE["current_use_taehv"]: if latents_cache is None: latents_cache = denoised_pred else: denoised_pred = torch.cat([latents_cache, denoised_pred], dim=1) latents_cache = denoised_pred[:, -3:] pixels = pipeline.vae.decode(denoised_pred) else: pixels, vae_cache = pipeline.vae(denoised_pred.half(), *vae_cache) # Handle frame skipping if idx == 0 and not args.trt: pixels = pixels[:, 3:] elif APP_STATE["current_use_taehv"] and idx > 0: pixels = pixels[:, 12:] print(f"🔍 DEBUG Block {idx}: Pixels shape after skipping: {pixels.shape}") # Process all frames from this block at once all_frames_from_block = [] for frame_idx in range(pixels.shape[1]): frame_tensor = pixels[0, frame_idx] # Convert to numpy (HWC, RGB, uint8) frame_np = torch.clamp(frame_tensor.float(), -1., 1.) * 127.5 + 127.5 frame_np = frame_np.to(torch.uint8).cpu().numpy() frame_np = np.transpose(frame_np, (1, 2, 0)) # CHW -> HWC all_frames_from_block.append(frame_np) total_frames_yielded += 1 # Yield status update for each frame (cute tracking!) blocks_completed = idx current_block_progress = (frame_idx + 1) / pixels.shape[1] total_progress = (blocks_completed + current_block_progress) / num_blocks * 100 # Cap at 100% to avoid going over total_progress = min(total_progress, 100.0) frame_status_html = ( f"
Generating Video...
" f" " f"" f" Block {idx+1}/{num_blocks} | Frame {total_frames_yielded} | {total_progress:.1f}%" f"
" f"" f" 📊 Generated {total_frames_yielded} frames across {num_blocks} blocks" f"
" f"" f" 🎬 Playback: {fps} FPS • 📁 Format: MPEG-TS/H.264" f"
" f"