|
import { pipeline } from 'stream' |
|
import { promisify } from 'util' |
|
|
|
import express from 'express' |
|
import { HfInference } from '@huggingface/inference' |
|
|
|
import { daisy } from './daisy.mts' |
|
|
|
const pipe = promisify(pipeline) |
|
|
|
const hfi = new HfInference(process.env.HF_API_TOKEN) |
|
const hf = hfi.endpoint(process.env.HF_ENDPOINT_URL) |
|
|
|
const app = express() |
|
const port = 7860 |
|
|
|
const minPromptSize = 16 |
|
const timeoutInSec = 30 * 60 |
|
|
|
console.log('timeout set to 30 minutes') |
|
|
|
app.use(express.static('public')) |
|
|
|
const pending: { |
|
total: number; |
|
queue: string[]; |
|
} = { |
|
total: 0, |
|
queue: [], |
|
} |
|
|
|
const endRequest = (id: string, reason: string) => { |
|
if (!id || !pending.queue.includes(id)) { |
|
return |
|
} |
|
|
|
pending.queue = pending.queue.filter(i => i !== id) |
|
console.log(`request ${id} ended (${reason})`) |
|
} |
|
|
|
app.get('/debug', (req, res) => { |
|
res.write(JSON.stringify({ |
|
nbTotal: pending.total, |
|
nbPending: pending.queue.length, |
|
queue: pending.queue, |
|
})) |
|
res.end() |
|
}) |
|
|
|
app.get('/app', async (req, res) => { |
|
if (`${req.query.prompt}`.length < minPromptSize) { |
|
res.write(`prompt too short, please enter at least ${minPromptSize} characters`) |
|
res.end() |
|
return |
|
} |
|
|
|
const id = `${pending.total++}` |
|
console.log(`new request ${id}`) |
|
|
|
pending.queue.push(id) |
|
|
|
const prefix = `<html><head><link href='https://cdn.jsdelivr.net/npm/[email protected]/dist/full.css' rel='stylesheet' type='text/css' /><script defer src='https://cdn.jsdelivr.net/npm/[email protected]/dist/cdn.min.js'></script><script src='https://cdn.tailwindcss.com?plugins=forms,typography,aspect-ratio,line-clamp'></script><title>Generated content</title><body` |
|
res.write(prefix) |
|
|
|
req.on('close', function() { |
|
endRequest(id, 'browser asked to end the connection') |
|
}) |
|
|
|
setTimeout(() => { |
|
endRequest(id, `timed out after ${timeoutInSec}s`) |
|
}, timeoutInSec * 1000) |
|
|
|
|
|
const finalPrompt = `# Task |
|
Generate the following: ${req.query.prompt} |
|
# API Documentation |
|
${daisy} |
|
# Guidelines |
|
- Never repeat the instruction, instead directly write the final code |
|
- Use a color scheme consistent with the brief and theme |
|
- To generate all your images, import from from this route: "/image?prompt=<description or caption of an image, photo or illustration>" |
|
- please be descriptive for the prompt, eg describe the scene in a few words (textures, characters, materials, camera type etc) |
|
- You must use Tailwind CSS and Daisy UI for the CSS classes, vanilla JS and Alpine.js for the JS. |
|
- All the JS code will be written directly inside the page, using <script type='text/javascript'>...</script> |
|
- You MUST use English, not Latin! (I repeat: do NOT write lorem ipsum!) |
|
- No need to write code comments, so please make the code compact (short function names etc) |
|
- Use a central layout by wrapping everything in a \`<div class='flex flex-col items-center'>\` |
|
# HTML output |
|
<html><head></head><body` |
|
|
|
try { |
|
let result = '' |
|
for await (const output of hf.textGenerationStream({ |
|
inputs: finalPrompt, |
|
parameters: { max_new_tokens: 1024 } |
|
})) { |
|
if (!pending.queue.includes(id)) { |
|
break |
|
} |
|
result += output.token.text |
|
process.stdout.write(output.token.text) |
|
res.write(output.token.text) |
|
if (result.includes('</html>')) { |
|
break |
|
} |
|
if (result.includes('<|end|>') || result.includes('<|assistant|>')) { |
|
break |
|
} |
|
} |
|
|
|
endRequest(id, `normal end of the LLM stream for request ${id}`) |
|
} catch (e) { |
|
console.log(e) |
|
endRequest(id, `premature end of the LLM stream for request ${id} (${e})`) |
|
} |
|
|
|
try { |
|
res.end() |
|
} catch (err) { |
|
console.log(`couldn't end the HTTP stream for request ${id} (${err})`) |
|
} |
|
|
|
}) |
|
|
|
app.get('/image', async (req, res) => { |
|
try { |
|
const blob = await hfi.textToImage({ |
|
inputs: [ |
|
`${req.query.prompt || 'generic placeholder'}`, |
|
'award winning', |
|
'high resolution', |
|
'beautiful', |
|
'[trending on artstation]' |
|
].join(','), |
|
model: 'stabilityai/stable-diffusion-2', |
|
parameters: { |
|
negative_prompt: 'blurry, cropped, low quality, ugly', |
|
} |
|
}) |
|
const buffer = Buffer.from(await blob.arrayBuffer()) |
|
res.setHeader('Content-Type', blob.type) |
|
res.setHeader('Content-Length', buffer.length) |
|
res.end(buffer) |
|
} catch (err) { |
|
console.error(`Error when generating the image: ${err.message}`); |
|
res.status(500).json({ error: 'An error occurred when trying to generate the image' }); |
|
} |
|
}) |
|
|
|
app.listen(port, () => { console.log(`Open http://localhost:${port}`) }) |
|
|
|
|