Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,69 +1,69 @@
|
|
1 |
-
import json
|
2 |
-
import torch
|
3 |
-
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
4 |
-
from gtts import gTTS
|
5 |
-
from diffusers import StableDiffusionPipeline
|
6 |
-
import gradio as gr
|
7 |
-
|
8 |
-
def load_fairytale(file_obj):
|
9 |
-
data = json.
|
10 |
-
return data['title'], data['content']
|
11 |
-
|
12 |
-
def generate_grandma_voice(text):
|
13 |
-
grandma_text = f"에구구 얘야, 잘 들어보렴. {text.strip()} ... 옛날 옛적 이야기란다~"
|
14 |
-
tts = gTTS(text=grandma_text, lang='ko')
|
15 |
-
audio_path = "grandma_voice.mp3"
|
16 |
-
tts.save(audio_path)
|
17 |
-
return audio_path
|
18 |
-
|
19 |
-
emotion_tokenizer = AutoTokenizer.from_pretrained("monologg/koelectra-base-discriminator")
|
20 |
-
emotion_model = AutoModelForSequenceClassification.from_pretrained("monologg/koelectra-base-discriminator")
|
21 |
-
|
22 |
-
def classify_emotion(text):
|
23 |
-
inputs = emotion_tokenizer(text, return_tensors="pt", truncation=True)
|
24 |
-
with torch.no_grad():
|
25 |
-
outputs = emotion_model(**inputs)
|
26 |
-
probs = torch.nn.functional.softmax(outputs.logits, dim=1)
|
27 |
-
label = torch.argmax(probs).item()
|
28 |
-
emotions_ko = ["기쁨", "슬픔", "분노", "불안", "중립"]
|
29 |
-
emotions_en = ["joy", "sadness", "anger", "anxiety", "neutral"]
|
30 |
-
return emotions_en[label], emotions_ko[label]
|
31 |
-
|
32 |
-
stable_pipe = StableDiffusionPipeline.from_pretrained(
|
33 |
-
"CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16
|
34 |
-
)
|
35 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
36 |
-
stable_pipe = stable_pipe.to(device)
|
37 |
-
|
38 |
-
def generate_emotion_image(emotion_en):
|
39 |
-
prompt = f"A dreamy digital painting that represents the feeling of {emotion_en}"
|
40 |
-
image = stable_pipe(prompt).images[0]
|
41 |
-
image_path = f"{emotion_en}_image.png"
|
42 |
-
image.save(image_path)
|
43 |
-
return image_path
|
44 |
-
|
45 |
-
def run_all(fairytale_file, child_feeling_text):
|
46 |
-
title, content = load_fairytale(fairytale_file)
|
47 |
-
audio_path = generate_grandma_voice(content[:300])
|
48 |
-
emotion_en, emotion_ko = classify_emotion(child_feeling_text)
|
49 |
-
image_path = generate_emotion_image(emotion_en)
|
50 |
-
return title, audio_path, emotion_ko, image_path
|
51 |
-
|
52 |
-
demo = gr.Interface(
|
53 |
-
fn=run_all,
|
54 |
-
inputs=[
|
55 |
-
gr.File(label="동화 JSON 파일 업로드"),
|
56 |
-
gr.Textbox(label="아이의 감상문")
|
57 |
-
],
|
58 |
-
outputs=[
|
59 |
-
gr.Text(label="동화 제목"),
|
60 |
-
gr.Audio(label="할머니 목소리"),
|
61 |
-
gr.Text(label="감정 분석 결과 (한국어)"),
|
62 |
-
gr.Image(label="감정 표현 이미지")
|
63 |
-
],
|
64 |
-
title="AI 할머니가 읽어주는 감성 동화책",
|
65 |
-
description="동화를 업로드하면 할머니가 읽어주고, 아이 감상문에 맞춰 감정 이미지를 생성합니다."
|
66 |
-
)
|
67 |
-
|
68 |
-
if __name__ == "__main__":
|
69 |
demo.launch()
|
|
|
1 |
+
import json
|
2 |
+
import torch
|
3 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
4 |
+
from gtts import gTTS
|
5 |
+
from diffusers import StableDiffusionPipeline
|
6 |
+
import gradio as gr
|
7 |
+
|
8 |
+
def load_fairytale(file_obj):
|
9 |
+
data = json.loads(file_obj.read().decode("utf-8")) # read & decode
|
10 |
+
return data['title'], data['content']
|
11 |
+
|
12 |
+
def generate_grandma_voice(text):
|
13 |
+
grandma_text = f"에구구 얘야, 잘 들어보렴. {text.strip()} ... 옛날 옛적 이야기란다~"
|
14 |
+
tts = gTTS(text=grandma_text, lang='ko')
|
15 |
+
audio_path = "grandma_voice.mp3"
|
16 |
+
tts.save(audio_path)
|
17 |
+
return audio_path
|
18 |
+
|
19 |
+
emotion_tokenizer = AutoTokenizer.from_pretrained("monologg/koelectra-base-discriminator")
|
20 |
+
emotion_model = AutoModelForSequenceClassification.from_pretrained("monologg/koelectra-base-discriminator")
|
21 |
+
|
22 |
+
def classify_emotion(text):
|
23 |
+
inputs = emotion_tokenizer(text, return_tensors="pt", truncation=True)
|
24 |
+
with torch.no_grad():
|
25 |
+
outputs = emotion_model(**inputs)
|
26 |
+
probs = torch.nn.functional.softmax(outputs.logits, dim=1)
|
27 |
+
label = torch.argmax(probs).item()
|
28 |
+
emotions_ko = ["기쁨", "슬픔", "분노", "불안", "중립"]
|
29 |
+
emotions_en = ["joy", "sadness", "anger", "anxiety", "neutral"]
|
30 |
+
return emotions_en[label], emotions_ko[label]
|
31 |
+
|
32 |
+
stable_pipe = StableDiffusionPipeline.from_pretrained(
|
33 |
+
"CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16
|
34 |
+
)
|
35 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
36 |
+
stable_pipe = stable_pipe.to(device)
|
37 |
+
|
38 |
+
def generate_emotion_image(emotion_en):
|
39 |
+
prompt = f"A dreamy digital painting that represents the feeling of {emotion_en}"
|
40 |
+
image = stable_pipe(prompt).images[0]
|
41 |
+
image_path = f"{emotion_en}_image.png"
|
42 |
+
image.save(image_path)
|
43 |
+
return image_path
|
44 |
+
|
45 |
+
def run_all(fairytale_file, child_feeling_text):
|
46 |
+
title, content = load_fairytale(fairytale_file)
|
47 |
+
audio_path = generate_grandma_voice(content[:300])
|
48 |
+
emotion_en, emotion_ko = classify_emotion(child_feeling_text)
|
49 |
+
image_path = generate_emotion_image(emotion_en)
|
50 |
+
return title, audio_path, emotion_ko, image_path
|
51 |
+
|
52 |
+
demo = gr.Interface(
|
53 |
+
fn=run_all,
|
54 |
+
inputs=[
|
55 |
+
gr.File(label="동화 JSON 파일 업로드"),
|
56 |
+
gr.Textbox(label="아이의 감상문")
|
57 |
+
],
|
58 |
+
outputs=[
|
59 |
+
gr.Text(label="동화 제목"),
|
60 |
+
gr.Audio(label="할머니 목소리"),
|
61 |
+
gr.Text(label="감정 분석 결과 (한국어)"),
|
62 |
+
gr.Image(label="감정 표현 이미지")
|
63 |
+
],
|
64 |
+
title="AI 할머니가 읽어주는 감성 동화책",
|
65 |
+
description="동화를 업로드하면 할머니가 읽어주고, 아이 감상문에 맞춰 감정 이미지를 생성합니다."
|
66 |
+
)
|
67 |
+
|
68 |
+
if __name__ == "__main__":
|
69 |
demo.launch()
|