import os import gradio as gr from langchain_community.document_loaders import TextLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_huggingface import HuggingFaceEmbeddings from langchain_community.vectorstores import Chroma from langchain.chains import RetrievalQA from langchain_groq import ChatGroq # Load documents loader = TextLoader("sample_readme.txt") documents = loader.load() # Split into chunks text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50) docs = text_splitter.split_documents(documents) # Create embeddings embedding = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2") # Vector DB vectorstore = Chroma.from_documents(docs, embedding, persist_directory="rag_chroma_groq") retriever = vectorstore.as_retriever() # Groq LLM groq_llm = ChatGroq(api_key=os.getenv("GROQ_API_KEY"), model_name="llama3-70b-8192") # RAG chain qa_chain = RetrievalQA.from_chain_type( llm=groq_llm, retriever=retriever, return_source_documents=False ) # Chat function def chatbot_interface(user_query): result = qa_chain({"query": user_query}) return result["result"] # Gradio UI iface = gr.Interface( fn=chatbot_interface, inputs=gr.Textbox(label="Ask a question about the document"), outputs=gr.Textbox(label="Answer"), title="RAG Chatbot with Groq + LangChain", description="Ask questions about sample_readme.txt using Groq LLM" ) if __name__ == "__main__": iface.launch()