Spaces:
Paused
Paused
import argparse | |
import subprocess | |
from tqdm import tqdm | |
import numpy as np | |
import torch | |
from torch.utils.data import DataLoader | |
import os | |
import torch.nn as nn | |
# from utils.dataset_utils import DenoiseTestDataset, DerainDehazeDataset | |
# from utils.val_utils import AverageMeter, compute_psnr_ssim | |
# from utils.image_io import save_image_tensor | |
from PIL import Image | |
from torchvision.transforms import ToTensor | |
import lightning.pytorch as pl | |
import torch.nn.functional as F | |
from net.prompt_xrestormer import PromptXRestormer | |
import json | |
# crop an image to the multiple of base | |
def crop_img(image, base=64): | |
h = image.shape[0] | |
w = image.shape[1] | |
crop_h = h % base | |
crop_w = w % base | |
return image[crop_h // 2:h - crop_h + crop_h // 2, crop_w // 2:w - crop_w + crop_w // 2, :] | |
class PromptXRestormerIRModel(pl.LightningModule): | |
def __init__(self): | |
super().__init__() | |
self.net = PromptXRestormer( | |
inp_channels=3, | |
out_channels=3, | |
dim = 48, | |
num_blocks = [2,4,4,4], | |
num_refinement_blocks = 4, | |
channel_heads= [1,1,1,1], | |
spatial_heads= [1,2,4,8], | |
overlap_ratio= [0.5, 0.5, 0.5, 0.5], | |
ffn_expansion_factor = 2.66, | |
bias = False, | |
LayerNorm_type = 'WithBias', ## Other option 'BiasFree' | |
dual_pixel_task = False, ## True for dual-pixel defocus deblurring only. Also set inp_channels=6 | |
scale = 1,prompt = True | |
) | |
self.loss_fn = nn.L1Loss() | |
def forward(self,x): | |
return self.net(x) | |
def np_to_pil(img_np): | |
""" | |
Converts image in np.array format to PIL image. | |
From C x W x H [0..1] to W x H x C [0...255] | |
:param img_np: | |
:return: | |
""" | |
ar = np.clip(img_np * 255, 0, 255).astype(np.uint8) | |
if img_np.shape[0] == 1: | |
ar = ar[0] | |
else: | |
assert img_np.shape[0] == 3, img_np.shape | |
ar = ar.transpose(1, 2, 0) | |
return Image.fromarray(ar) | |
def torch_to_np(img_var): | |
""" | |
Converts an image in torch.Tensor format to np.array. | |
From 1 x C x W x H [0..1] to C x W x H [0..1] | |
:param img_var: | |
:return: | |
""" | |
return img_var.detach().cpu().numpy()[0] | |
def save_image_tensor(image_tensor, output_path="output/"): | |
image_np = torch_to_np(image_tensor) | |
# print(image_np.shape) | |
p = np_to_pil(image_np) | |
p.save(output_path) | |
if __name__ == '__main__': | |
np.random.seed(0) | |
torch.manual_seed(0) | |
torch.cuda.set_device(0) | |
ckpt_path = "/home/jiachen/MyGradio/ckpt/promptxrestormer_epoch=64-step=578630.ckpt" | |
print("CKPT name : {}".format(ckpt_path)) | |
net = PromptXRestormerIRModel().load_from_checkpoint(ckpt_path).cuda() | |
net.eval() | |
degraded_path = "/home/jiachen/MyGradio/test_images/noisy_myimage.jpg" | |
degraded_img = crop_img(np.array(Image.open(degraded_path).convert('RGB')), base=16) | |
toTensor = ToTensor() | |
degraded_img = toTensor(degraded_img) | |
print(degraded_img.shape) | |
with torch.no_grad(): | |
degraded_img = degraded_img.unsqueeze(0).cuda() | |
_, _, H_old, W_old = degraded_img.shape | |
h_pad = (H_old // 64 + 1) * 64 - H_old | |
w_pad = (W_old // 64 + 1) * 64 - W_old | |
degraded_img = torch.cat([degraded_img, torch.flip(degraded_img, [2])], 2)[:,:,:H_old+h_pad,:] | |
degraded_img = torch.cat([degraded_img, torch.flip(degraded_img, [3])], 3)[:,:,:,:W_old+w_pad] | |
print("inputImage size", degraded_img.shape) | |
restored = net(degraded_img) | |
restored = restored[:,:,:H_old:,:W_old] | |
save_image_tensor(restored, "output.png") | |