File size: 9,591 Bytes
6639f75 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
"""
schema_tester.py - Official Schema Testing System
This script iterates over all schemas in schemas/, prompts the trained model,
validates output with jsonschema, and prints comprehensive pass/fail results.
Matches the exact specification from the user's requirements.
"""
import os
import json
import torch
from pathlib import Path
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
import jsonschema
from jsonschema import validate, ValidationError
import random
class SchemaValidator:
"""Handles JSON schema validation."""
@staticmethod
def validate_function_call(response, schema):
"""Validate if response matches expected function call structure."""
try:
# Parse the JSON response
call_data = json.loads(response)
# Check basic structure
if not isinstance(call_data, dict):
return False, "Response is not a JSON object"
if "name" not in call_data:
return False, "Missing 'name' field"
if "arguments" not in call_data:
return False, "Missing 'arguments' field"
# Check function name matches
if call_data["name"] != schema["name"]:
return False, f"Function name mismatch: expected '{schema['name']}', got '{call_data['name']}'"
# Validate arguments against schema
try:
validate(instance=call_data["arguments"], schema=schema["parameters"])
return True, "Valid function call"
except ValidationError as e:
return False, f"Argument validation failed: {e.message}"
except json.JSONDecodeError as e:
return False, f"Invalid JSON: {e}"
class ModelTester:
"""Handles model loading and testing."""
def __init__(self, model_path="./smollm3_robust"):
self.model_path = model_path
self.model = None
self.tokenizer = None
self.device = None
self._load_model()
def _load_model(self):
"""Load the trained model."""
print("π Loading trained SmolLM3-3B model...")
base_model_name = "HuggingFaceTB/SmolLM3-3B"
# Load tokenizer
self.tokenizer = AutoTokenizer.from_pretrained(base_model_name)
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
# Load base model
base_model = AutoModelForCausalLM.from_pretrained(
base_model_name,
torch_dtype=torch.float32,
trust_remote_code=True
)
# Load trained adapter
self.model = PeftModel.from_pretrained(base_model, self.model_path)
# Setup device
if torch.backends.mps.is_available():
self.model = self.model.to("mps")
self.device = "mps"
else:
self.device = "cpu"
print(f"β
Model loaded on {self.device}")
def test_schema(self, schema, question):
"""Test the model on a specific schema and question."""
prompt = f"""<|im_start|>system
You are a helpful assistant that calls functions by responding with valid JSON when given a schema. Always respond with JSON function calls only, never prose.<|im_end|>
<schema>
{json.dumps(schema, indent=2)}
</schema>
<|im_start|>user
{question}<|im_end|>
<|im_start|>assistant
"""
# Tokenize
inputs = self.tokenizer(prompt, return_tensors="pt")
if self.device == "mps":
inputs = {k: v.to(self.device) for k, v in inputs.items()}
# Generate
self.model.eval()
with torch.no_grad():
outputs = self.model.generate(
**inputs,
max_new_tokens=150,
temperature=0.1,
do_sample=True,
pad_token_id=self.tokenizer.eos_token_id,
eos_token_id=self.tokenizer.eos_token_id
)
# Decode response
input_length = inputs["input_ids"].shape[1]
response = self.tokenizer.decode(outputs[0][input_length:], skip_special_tokens=True)
# Clean up response (handle common trailing issues)
response = response.strip()
if response.endswith('}"}'):
response = response[:-2]
if response.endswith('}}'):
response = response[:-1]
return response
def load_schemas(schemas_dir="schemas"):
"""Load all schema files from the schemas directory."""
schemas = {}
schema_files = Path(schemas_dir).glob("*.json")
for schema_file in schema_files:
try:
with open(schema_file, 'r') as f:
schema_data = json.load(f)
schemas[schema_file.stem] = schema_data
except Exception as e:
print(f"β οΈ Error loading {schema_file}: {e}")
return schemas
def run_comprehensive_test():
"""Run the complete schema testing suite."""
print("π§ͺ Official Schema Testing System")
print("=" * 50)
# Load schemas
print("π Loading evaluation schemas...")
schemas = load_schemas()
if not schemas:
print("β No schemas found in schemas/ directory")
return
print(f"β
Loaded {len(schemas)} schemas: {', '.join(schemas.keys())}")
# Initialize model tester
tester = ModelTester()
validator = SchemaValidator()
# Test results tracking
results = {}
total_tests = 0
total_passed = 0
print(f"\nπ― Running tests on all schemas...")
print("-" * 50)
# Test each schema
for schema_name, schema_data in schemas.items():
print(f"\nπ Testing Schema: {schema_name}")
print(f"π§ Function: {schema_data['name']}")
# Get test questions
test_questions = schema_data.get('test_questions', [])
if not test_questions:
print("β οΈ No test questions found, skipping")
continue
schema_results = []
# Test each question for this schema
for i, question in enumerate(test_questions, 1):
print(f"\nβ Test {i}: {question}")
# Get model response
response = tester.test_schema(schema_data, question)
print(f"π€ Response: {response}")
# Validate response
is_valid, error_msg = validator.validate_function_call(response, schema_data)
if is_valid:
print(f"β
PASS - {error_msg}")
schema_results.append(True)
total_passed += 1
else:
print(f"β FAIL - {error_msg}")
schema_results.append(False)
total_tests += 1
# Schema summary
schema_passed = sum(schema_results)
schema_total = len(schema_results)
schema_rate = schema_passed / schema_total * 100
results[schema_name] = {
'passed': schema_passed,
'total': schema_total,
'rate': schema_rate,
'results': schema_results
}
print(f"π Schema Summary: {schema_passed}/{schema_total} ({schema_rate:.1f}%)")
# Overall results
print(f"\n" + "=" * 50)
print(f"π OVERALL RESULTS")
print(f"=" * 50)
overall_rate = total_passed / total_tests * 100
print(f"β
Total passed: {total_passed}/{total_tests} ({overall_rate:.1f}%)")
print(f"π― Target: β₯80% valid calls")
# Detailed breakdown
print(f"\nπ Detailed Breakdown:")
for schema_name, result in results.items():
status = "β
PASS" if result['rate'] >= 80 else "β FAIL"
print(f" {schema_name}: {result['passed']}/{result['total']} ({result['rate']:.1f}%) {status}")
# Success evaluation
if overall_rate >= 80:
print(f"\nπ SUCCESS! Model meets the β₯80% target")
print(f"π Ready for enterprise deployment")
else:
print(f"\nπ IMPROVEMENT NEEDED")
print(f"π Current: {overall_rate:.1f}% | Target: β₯80%")
print(f"π‘ Suggestions:")
# Analyze failure patterns
failed_schemas = [name for name, result in results.items() if result['rate'] < 80]
if failed_schemas:
print(f" 1. Focus training on: {', '.join(failed_schemas)}")
print(f" 2. Add more examples for complex parameter schemas")
print(f" 3. Increase training epochs or learning rate")
print(f" 4. Consider using larger LoRA rank (r=16)")
print(f" 5. Generate more diverse training examples")
return results, overall_rate
def main():
"""Main entry point."""
try:
results, rate = run_comprehensive_test()
# Save results
with open("test_results.json", "w") as f:
json.dump({
"overall_rate": rate,
"results": results,
"timestamp": str(torch.cuda.current_device() if torch.cuda.is_available() else "cpu")
}, f, indent=2)
print(f"\nπΎ Results saved to test_results.json")
except Exception as e:
print(f"β Testing failed: {e}")
raise
if __name__ == "__main__":
main() |