File size: 11,155 Bytes
6639f75 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 |
"""
tool_trainer_m4_max.py - Optimized training for M4 Max Apple Silicon + SmolLM3-3B
This script is specifically optimized for:
- M4 Max 40-core GPU Apple Silicon
- SmolLM3-3B (larger, more capable model)
- Large training dataset (100+ examples)
- Aggressive but stable hyperparameters for fast, high-quality training
"""
import json
import torch
import torch.backends.mps
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
TrainingArguments,
Trainer,
DataCollatorForLanguageModeling
)
from peft import LoraConfig, get_peft_model, TaskType
from datasets import Dataset
import os
import time
def setup_mps_optimization():
"""Configure optimal settings for M4 Max."""
print("π Configuring M4 Max optimizations...")
# Check MPS availability
if torch.backends.mps.is_available():
print("β
MPS (Metal Performance Shaders) is available")
print(f"π Using all 40 GPU cores of M4 Max")
device = torch.device("mps")
else:
print("β οΈ MPS not available, falling back to CPU")
device = torch.device("cpu")
# Optimize memory allocation
os.environ["PYTORCH_MPS_HIGH_WATERMARK_RATIO"] = "0.0" # Aggressive memory usage
os.environ["TOKENIZERS_PARALLELISM"] = "false" # Avoid fork warnings
return device
def load_training_data(file_path="tool_pairs_enhanced.jsonl"):
"""Load the comprehensive training dataset."""
pairs = []
with open(file_path, 'r') as f:
for line in f:
pairs.append(json.loads(line.strip()))
return pairs
def format_for_sft(pairs, tokenizer):
"""Convert pairs to SFT format optimized for function calling."""
formatted = []
for pair in pairs:
# Create training example: prompt + chosen response
full_text = pair["prompt"] + pair["chosen"] + tokenizer.eos_token
formatted.append({"text": full_text})
return formatted
def tokenize_function(examples, tokenizer, max_length=512):
"""Tokenize with consistent padding for variable length sequences."""
# Reduced max_length to handle variable sequences better
tokenized = tokenizer(
examples["text"],
truncation=True,
padding="max_length", # Consistent padding
max_length=max_length,
return_tensors=None
)
# For causal LM, labels are the same as input_ids
tokenized["labels"] = tokenized["input_ids"]
return tokenized
def main():
print("π M4 Max Optimized Training: SmolLM3-3B Function Calling")
print("=" * 70)
# Setup M4 Max optimizations
device = setup_mps_optimization()
start_time = time.time()
# 1. Load SmolLM3-3B (the real deal!)
print("π₯ Loading SmolLM3-3B model and tokenizer...")
model_name = "HuggingFaceTB/SmolLM3-3B" # Using the actual SmolLM3-3B!
tokenizer = AutoTokenizer.from_pretrained(model_name)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
# Ensure consistent tokenizer settings
tokenizer.padding_side = "right"
# Load model with MPS optimization
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float32, # Use float32 for MPS compatibility
trust_remote_code=True,
attn_implementation="eager" # More stable for training
)
# Move to MPS if available
if str(device) == "mps":
model = model.to(device)
print(f"β
Loaded model: {model_name}")
print(f"π§ Model dtype: {model.dtype}")
print(f"πΎ Model size: ~{sum(p.numel() for p in model.parameters()) / 1e9:.1f}B parameters")
print(f"π― Device: {device}")
# 2. Setup LoRA with optimized config for larger model
print("\nπ© Setting up LoRA adapter (rank 16 for SmolLM3-3B)...")
lora_config = LoraConfig(
r=16, # Higher rank for 3B model (more capacity)
lora_alpha=32, # 2x rank
target_modules=[ # Target more modules for better coverage
"q_proj", "v_proj", "k_proj", "o_proj",
"gate_proj", "up_proj", "down_proj",
"embed_tokens", "lm_head" # Include embeddings for better learning
],
lora_dropout=0.05, # Lower dropout for stability
bias="none",
task_type=TaskType.CAUSAL_LM,
modules_to_save=["embed_tokens", "lm_head"] # Save these for better function calling
)
model = get_peft_model(model, lora_config)
trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
total_params = sum(p.numel() for p in model.parameters())
print(f"β
LoRA adapter attached")
print(f"π― Trainable parameters: {trainable_params:,} ({trainable_params/total_params*100:.2f}%)")
# 3. Load comprehensive training data
print("\nπ Loading comprehensive training dataset...")
pairs = load_training_data()
formatted_pairs = format_for_sft(pairs, tokenizer)
print(f"β
Loaded {len(pairs)} training pairs")
print(f"π Dataset is {len(pairs)/8:.1f}x larger than before!")
# Create and tokenize dataset
train_dataset = Dataset.from_list(formatted_pairs)
tokenized_dataset = train_dataset.map(
lambda x: tokenize_function(x, tokenizer),
batched=True,
remove_columns=train_dataset.column_names,
num_proc=1 # Single process for MPS compatibility
)
print(f"π Tokenized dataset: {len(tokenized_dataset)} examples")
# 4. Optimized training arguments for M4 Max
print("\nβοΈ Configuring M4 Max optimized training...")
training_args = TrainingArguments(
output_dir="./smollm3_tool_adapter",
num_train_epochs=5, # More epochs with larger dataset
per_device_train_batch_size=4, # Larger batch size for M4 Max
gradient_accumulation_steps=2, # Effective batch size = 8
learning_rate=3e-4, # Higher LR for faster convergence
weight_decay=0.01, # Regularization
warmup_steps=50, # More warmup for stability
logging_steps=5,
save_steps=25,
save_total_limit=3,
remove_unused_columns=False,
fp16=False, # Disable mixed precision for MPS compatibility
dataloader_pin_memory=False, # Disable for MPS
report_to=None,
logging_dir="./logs",
gradient_checkpointing=True, # Memory optimization
optim="adamw_torch", # Optimized optimizer
lr_scheduler_type="cosine", # Better convergence
save_strategy="steps",
eval_strategy="no",
load_best_model_at_end=False,
)
# 5. Data collator with proper padding
data_collator = DataCollatorForLanguageModeling(
tokenizer=tokenizer,
mlm=False,
pad_to_multiple_of=8, # Efficient padding for performance
)
# 6. Initialize optimized trainer
print("ποΈ Initializing M4 Max optimized trainer...")
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_dataset,
data_collator=data_collator,
remove_unused_columns=False,
)
print("β
Trainer ready for M4 Max acceleration")
# 7. Start accelerated training
print("\nπ― Starting accelerated training on M4 Max...")
print("β±οΈ Expected time: ~3-5 minutes with 40 GPU cores")
print("π Monitoring loss for quality improvement...")
# Train with progress monitoring
train_result = trainer.train()
end_time = time.time()
training_time = end_time - start_time
print("\nπ M4 Max training completed!")
print(f"π Final training loss: {train_result.training_loss:.4f}")
print(f"β±οΈ Total training time: {training_time:.1f} seconds")
print(f"π Training speed: {len(pairs) * 5 / training_time:.1f} examples/second")
# 8. Save the optimized model
print("\nπΎ Saving optimized model adapter...")
model.save_pretrained("./smollm3_tool_adapter")
tokenizer.save_pretrained("./smollm3_tool_adapter")
print("β
Model saved to './smollm3_tool_adapter'")
# 9. Enhanced functionality test
print("\nπ§ͺ Enhanced functionality test...")
test_schemas = [
{
"schema": {
"name": "get_stock_price",
"description": "Get current stock price",
"parameters": {
"type": "object",
"properties": {"ticker": {"type": "string"}},
"required": ["ticker"]
}
},
"question": "What's Google stock price?",
"expected_ticker": "GOOGL"
},
{
"schema": {
"name": "process_payment",
"description": "Process a payment transaction",
"parameters": {
"type": "object",
"properties": {
"amount": {"type": "number"},
"currency": {"type": "string"},
"recipient": {"type": "string"}
},
"required": ["amount", "recipient"]
}
},
"question": "Send $150 to Alice",
"expected": "process_payment"
}
]
model.eval()
for i, test in enumerate(test_schemas, 1):
test_prompt = f"""<|im_start|>system
You are a helpful assistant that calls functions by responding with valid JSON when given a schema. Always respond with JSON function calls only, never prose.<|im_end|>
<schema>
{json.dumps(test['schema'], indent=2)}
</schema>
<|im_start|>user
{test['question']}<|im_end|>
<|im_start|>assistant
"""
inputs = tokenizer(test_prompt, return_tensors="pt")
if str(device) == "mps":
inputs = {k: v.to(device) for k, v in inputs.items()}
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=80,
temperature=0.1,
do_sample=True,
pad_token_id=tokenizer.eos_token_id
)
response = tokenizer.decode(outputs[0][len(inputs.input_ids[0]):], skip_special_tokens=True)
print(f"π§ͺ Test {i}: {test['question']}")
print(f"π€ Response: {response.strip()}")
# Try to parse JSON
try:
json_response = json.loads(response.strip())
print(f"β
Valid JSON: {json_response}")
except:
print(f"β Invalid JSON")
print("-" * 50)
print("\nπ M4 Max Optimized Training Complete!")
print(f"π Loss reduction with {len(pairs)} examples should be significant")
print(f"π― Ready for comprehensive testing with schema_tester.py")
return model, tokenizer
if __name__ == "__main__":
model, tokenizer = main() |