File size: 5,073 Bytes
015d150 beb266c 015d150 beb266c 015d150 beb266c 015d150 beb266c 015d150 beb266c 015d150 beb266c 015d150 beb266c 015d150 beb266c 015d150 beb266c 015d150 beb266c 015d150 beb266c 015d150 beb266c 015d150 beb266c 015d150 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
# π Dynamic Function-Calling Agent - Deployment Guide
## π Quick Status Check
β
**Repository Optimization**: 2.3MB (99.3% reduction from 340MB)
β
**Hugging Face Spaces**: Deployed with timeout protection
π **Fine-tuned Model**: Being uploaded to HF Hub
β
**GitHub Ready**: All source code available
## π― **STRATEGY: Complete Fine-Tuned Model Deployment**
### **Phase 1: β
COMPLETED - Repository Optimization**
- [x] Used BFG Repo-Cleaner to remove large files from git history
- [x] Repository size reduced from 340MB to 2.3MB
- [x] Eliminated API token exposure issues
- [x] Enhanced .gitignore for comprehensive protection
### **Phase 2: β
COMPLETED - Hugging Face Spaces Fix**
- [x] Added timeout protection for inference
- [x] Optimized memory usage with float16
- [x] Cross-platform threading for timeouts
- [x] Better error handling and progress indication
### **Phase 3: π IN PROGRESS - Fine-Tuned Model Distribution**
#### **Option A: Hugging Face Hub LoRA Upload (RECOMMENDED)**
```bash
# 1. Train/retrain the model locally
python tool_trainer_simple_robust.py
# 2. Upload LoRA adapter to Hugging Face Hub
huggingface-cli login
python -c "
from huggingface_hub import HfApi, upload_folder
api = HfApi()
upload_folder(
folder_path='./smollm3_robust',
repo_id='jlov7/SmolLM3-Function-Calling-LoRA',
repo_type='model'
)
"
# 3. Update code to load from Hub
# In test_constrained_model.py:
# from peft import PeftModel
# model = PeftModel.from_pretrained(model, "jlov7/SmolLM3-Function-Calling-LoRA")
```
#### **Option B: Git LFS Integration**
```bash
# Track large files with Git LFS
git lfs track "*.safetensors"
git lfs track "*.bin"
git lfs track "smollm3_robust/*"
# Add and commit model files
git add .gitattributes
git add smollm3_robust/
git commit -m "feat: add fine-tuned model with Git LFS"
```
### **Phase 4: Universal Deployment**
#### **Local Development** β
```bash
git clone https://github.com/jlov7/Dynamic-Function-Calling-Agent
cd Dynamic-Function-Calling-Agent
pip install -r requirements.txt
python app.py # Works with local model files
```
#### **GitHub Repository** β
- All source code available
- Can work with either Hub-hosted or LFS-tracked models
- Complete development environment
#### **Hugging Face Spaces** β
- Loads fine-tuned model from Hub automatically
- Falls back to base model if adapter unavailable
- Optimized for cloud inference
## π **RECOMMENDED DEPLOYMENT ARCHITECTURE**
```
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β DEPLOYMENT STRATEGY β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ€
β β
β π GitHub Repo (2.3MB) β
β βββ Source code + schemas β
β βββ Training scripts β
β βββ Documentation β
β β
β π€ HF Hub Model Repo β
β βββ LoRA adapter files (~60MB) β
β βββ Training metrics β
β βββ Model card with performance stats β
β β
β π HF Spaces Demo β
β βββ Loads adapter from Hub automatically β
β βββ Falls back to base model if needed β
β βββ 100% working demo with timeout protection β
β β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
```
## π― **IMMEDIATE NEXT STEPS**
1. **β
DONE** - Timeout fixes deployed to HF Spaces
2. **π RUNNING** - Retraining model locally
3. **β³ TODO** - Upload adapter to HF Hub
4. **β³ TODO** - Update loading code to use Hub
5. **β³ TODO** - Test complete pipeline
## π **EXPECTED RESULTS**
- **Local**: 100% success rate with full fine-tuned model
- **GitHub**: Complete source code with training capabilities
- **HF Spaces**: Live demo with fine-tuned model performance
- **Performance**: Sub-second inference, 100% JSON validity
- **Maintainability**: Easy updates via Hub, no repo bloat
This architecture gives you the best of all worlds:
- Small, fast repositories
- Powerful fine-tuned models everywhere
- Professional deployment pipeline
- No timeout or size limit issues |