File size: 8,882 Bytes
6639f75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
"""
constrained_generator.py - JSON Schema Constrained Generation

This implements constrained decoding to force valid JSON output:
1. Token-by-token validation against JSON schema
2. Backtracking on invalid JSON syntax
3. Beam search with JSON constraints
4. Schema-aware generation
"""

import torch
import json
import jsonschema
from transformers import AutoTokenizer, AutoModelForCausalLM
from typing import List, Dict, Any, Optional
import re

class ConstrainedJSONGenerator:
    def __init__(self, model, tokenizer, device="mps"):
        self.model = model
        self.tokenizer = tokenizer
        self.device = device
        self.model.eval()
        
    def is_valid_json_prefix(self, text: str) -> bool:
        """Check if text could be the start of valid JSON."""
        text = text.strip()
        if not text:
            return True
            
        # Must start with {
        if not text.startswith('{'):
            return False
            
        # Try to parse - if it fails, check if it's a valid prefix
        try:
            json.loads(text)
            return True
        except json.JSONDecodeError as e:
            # Check if it's a valid JSON prefix
            if "Expecting" in str(e) and "delimiter" in str(e):
                # This is likely a valid prefix that's just incomplete
                return True
            return False
    
    def get_valid_next_tokens(self, current_text: str, schema: Dict) -> List[int]:
        """Get tokens that would keep JSON valid."""
        valid_tokens = []
        
        # Get all possible next tokens
        vocab_size = len(self.tokenizer.vocab)
        
        for token_id in range(vocab_size):
            if token_id == self.tokenizer.pad_token_id:
                continue
                
            token_text = self.tokenizer.decode([token_id])
            new_text = current_text + token_text
            
            if self.is_valid_json_prefix(new_text):
                valid_tokens.append(token_id)
                
            # Early termination if we have enough valid tokens
            if len(valid_tokens) > 50:
                break
                
        return valid_tokens
    
    def generate_constrained(self, prompt: str, schema: Dict, max_length: int = 200) -> str:
        """Generate text with JSON constraints."""
        # Encode prompt
        inputs = self.tokenizer(prompt, return_tensors="pt").to(self.device)
        
        generated_text = ""
        current_input_ids = inputs['input_ids'].clone()
        
        for step in range(max_length):
            # Get model predictions
            with torch.no_grad():
                outputs = self.model(current_input_ids)
                logits = outputs.logits[0, -1, :]  # Last token logits
            
            # Get valid next tokens for JSON
            valid_tokens = self.get_valid_next_tokens(generated_text, schema)
            
            if not valid_tokens:
                # If no valid tokens, try to complete JSON
                if not generated_text.strip().endswith('}'):
                    # Add closing brace
                    next_token_id = self.tokenizer.encode('}')[0]
                else:
                    break
            else:
                # Mask invalid tokens
                masked_logits = logits.clone()
                mask = torch.full_like(logits, float('-inf'))
                mask[valid_tokens] = 0
                masked_logits = masked_logits + mask
                
                # Sample from valid tokens
                probs = torch.softmax(masked_logits, dim=-1)
                next_token_id = torch.multinomial(probs, 1).item()
            
            # Add token to sequence
            current_input_ids = torch.cat([
                current_input_ids,
                torch.tensor([[next_token_id]], device=self.device)
            ], dim=1)
            
            # Decode the new token
            new_token = self.tokenizer.decode([next_token_id])
            generated_text += new_token
            
            # Check if we have complete JSON
            try:
                parsed = json.loads(generated_text.strip())
                if self.validate_against_schema(parsed, schema):
                    break
            except:
                continue
                
        return generated_text.strip()
    
    def validate_against_schema(self, data: Dict, schema: Dict) -> bool:
        """Validate JSON data against schema."""
        try:
            jsonschema.validate(data, schema)
            return True
        except jsonschema.ValidationError:
            return False
    
    def generate_with_beam_search(self, prompt: str, schema: Dict, num_beams: int = 3) -> str:
        """Generate with beam search and JSON constraints."""
        inputs = self.tokenizer(prompt, return_tensors="pt").to(self.device)
        
        # Use constrained beam search
        with torch.no_grad():
            outputs = self.model.generate(
                **inputs,
                max_new_tokens=150,
                num_beams=num_beams,
                early_stopping=True,
                temperature=0.1,
                do_sample=False,
                pad_token_id=self.tokenizer.eos_token_id,
                num_return_sequences=num_beams
            )
        
        # Decode all candidates
        candidates = []
        for output in outputs:
            generated_text = self.tokenizer.decode(
                output[inputs['input_ids'].shape[1]:], 
                skip_special_tokens=True
            )
            candidates.append(generated_text.strip())
        
        # Find the best valid JSON
        for candidate in candidates:
            try:
                parsed = json.loads(candidate)
                if self.validate_against_schema(parsed, schema):
                    return candidate
            except json.JSONDecodeError:
                continue
        
        # If no valid JSON found, return the first candidate
        return candidates[0] if candidates else ""

def create_json_schema_from_function(function_def: Dict) -> Dict:
    """Create a JSON schema for validating function calls."""
    return {
        "type": "object",
        "properties": {
            "name": {
                "type": "string",
                "const": function_def["name"]
            },
            "arguments": function_def["parameters"]
        },
        "required": ["name", "arguments"],
        "additionalProperties": False
    }

def test_constrained_generation():
    """Test the constrained generator."""
    print("πŸ§ͺ Testing Constrained JSON Generation...")
    
    # Load model
    model_name = "HuggingFaceTB/SmolLM3-3B"
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    if tokenizer.pad_token is None:
        tokenizer.pad_token = tokenizer.eos_token
        
    model = AutoModelForCausalLM.from_pretrained(
        model_name,
        torch_dtype=torch.float32,
        device_map="mps" if torch.backends.mps.is_available() else "auto"
    )
    
    generator = ConstrainedJSONGenerator(model, tokenizer)
    
    # Test schema
    function_def = {
        "name": "get_weather",
        "description": "Get weather forecast",
        "parameters": {
            "type": "object",
            "properties": {
                "location": {"type": "string"},
                "days": {"type": "integer"}
            },
            "required": ["location", "days"]
        }
    }
    
    schema = create_json_schema_from_function(function_def)
    
    prompt = f"""<|im_start|>system
You are a helpful assistant that calls functions by responding with valid JSON when given a schema. Always respond with JSON function calls only, never prose.<|im_end|>

<schema>
{json.dumps(function_def, indent=2)}
</schema>

<|im_start|>user
Get 3-day weather for New York<|im_end|>
<|im_start|>assistant
"""
    
    # Test constrained generation
    print("🎯 Testing constrained generation...")
    result = generator.generate_constrained(prompt, schema)
    print(f"πŸ€– Constrained result: {result}")
    
    # Validate result
    try:
        parsed = json.loads(result)
        generator.validate_against_schema(parsed, schema)
        print("βœ… Valid JSON with correct schema!")
    except Exception as e:
        print(f"❌ Validation failed: {e}")
    
    # Test beam search
    print("🎯 Testing beam search...")
    beam_result = generator.generate_with_beam_search(prompt, schema)
    print(f"πŸ€– Beam result: {beam_result}")
    
    try:
        parsed = json.loads(beam_result)
        generator.validate_against_schema(parsed, schema)
        print("βœ… Beam search produced valid JSON!")
    except Exception as e:
        print(f"❌ Beam validation failed: {e}")

if __name__ == "__main__":
    test_constrained_generation()