File size: 8,083 Bytes
6639f75 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
"""
test_smollm3_robust.py - Test the robust SmolLM3-3B model
This script tests our newly trained model on various schemas to measure
the dramatic improvement in function calling capability.
"""
import torch
import json
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
def load_trained_model():
"""Load the robust trained model."""
print("π Loading robust SmolLM3-3B model...")
base_model_name = "HuggingFaceTB/SmolLM3-3B"
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
# Load base model
base_model = AutoModelForCausalLM.from_pretrained(
base_model_name,
torch_dtype=torch.float32,
trust_remote_code=True
)
# Load trained adapter
model = PeftModel.from_pretrained(base_model, "./smollm3_robust")
# Setup device
if torch.backends.mps.is_available():
model = model.to("mps")
device = "mps"
else:
device = "cpu"
print(f"β
Model loaded on {device}")
return model, tokenizer, device
def test_function_call(model, tokenizer, device, schema, question):
"""Test the model on a specific schema and question."""
prompt = f"""<|im_start|>system
You are a helpful assistant that calls functions by responding with valid JSON when given a schema. Always respond with JSON function calls only, never prose.<|im_end|>
<schema>
{json.dumps(schema, indent=2)}
</schema>
<|im_start|>user
{question}<|im_end|>
<|im_start|>assistant
"""
# Tokenize
inputs = tokenizer(prompt, return_tensors="pt")
if device == "mps":
inputs = {k: v.to(device) for k, v in inputs.items()}
# Generate
model.eval()
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=100,
temperature=0.1,
do_sample=True,
pad_token_id=tokenizer.eos_token_id,
eos_token_id=tokenizer.eos_token_id
)
# Decode response
input_length = inputs["input_ids"].shape[1]
response = tokenizer.decode(outputs[0][input_length:], skip_special_tokens=True)
# Clean up response (remove common trailing issues)
response = response.strip()
if response.endswith('}"}'):
response = response[:-2] # Remove extra "}
if response.endswith('}}'):
response = response[:-1] # Remove extra }
# Validate JSON
try:
json_response = json.loads(response)
is_valid = True
# Check if it has required structure
has_name = "name" in json_response
has_args = "arguments" in json_response
correct_name = json_response.get("name") == schema["name"]
score = sum([is_valid, has_name, has_args, correct_name])
except json.JSONDecodeError as e:
is_valid = False
json_response = None
score = 0
return response, is_valid, json_response, score
def main():
print("π§ͺ Testing Robust SmolLM3-3B Function Calling")
print("=" * 55)
# Load model
model, tokenizer, device = load_trained_model()
# Comprehensive test cases
test_cases = [
{
"name": "Stock Price (Training)",
"schema": {
"name": "get_stock_price",
"description": "Get current stock price for a ticker",
"parameters": {
"type": "object",
"properties": {"ticker": {"type": "string"}},
"required": ["ticker"]
}
},
"question": "What's Apple stock trading at?"
},
{
"name": "Weather (Seen Pattern)",
"schema": {
"name": "get_weather",
"description": "Get weather for a location",
"parameters": {
"type": "object",
"properties": {"location": {"type": "string"}},
"required": ["location"]
}
},
"question": "How's the weather in Tokyo?"
},
{
"name": "NEW: Database Query",
"schema": {
"name": "execute_sql",
"description": "Execute SQL query on database",
"parameters": {
"type": "object",
"properties": {
"query": {"type": "string"},
"database": {"type": "string"}
},
"required": ["query"]
}
},
"question": "Find all users who registered this month"
},
{
"name": "NEW: Complex Parameters",
"schema": {
"name": "book_flight",
"description": "Book a flight ticket",
"parameters": {
"type": "object",
"properties": {
"from_city": {"type": "string"},
"to_city": {"type": "string"},
"departure_date": {"type": "string"},
"passengers": {"type": "integer"}
},
"required": ["from_city", "to_city", "departure_date"]
}
},
"question": "Book a flight from New York to London for December 15th"
},
{
"name": "NEW: Financial Transaction",
"schema": {
"name": "transfer_funds",
"description": "Transfer money between accounts",
"parameters": {
"type": "object",
"properties": {
"amount": {"type": "number"},
"from_account": {"type": "string"},
"to_account": {"type": "string"},
"memo": {"type": "string"}
},
"required": ["amount", "from_account", "to_account"]
}
},
"question": "Send $500 from checking to savings"
}
]
# Run tests
total_score = 0
max_score = len(test_cases) * 4 # 4 points per test
valid_json_count = 0
for i, test_case in enumerate(test_cases, 1):
print(f"\nπ Test {i}: {test_case['name']}")
print(f"β Question: {test_case['question']}")
response, is_valid, json_obj, score = test_function_call(
model, tokenizer, device, test_case['schema'], test_case['question']
)
print(f"π€ Raw response: {response}")
if is_valid:
print(f"β
Valid JSON: {json_obj}")
valid_json_count += 1
else:
print(f"β Invalid JSON")
print(f"π Score: {score}/4")
total_score += score
print("-" * 50)
# Summary
print(f"\nπ FINAL RESULTS:")
print(f"β
Valid JSON responses: {valid_json_count}/{len(test_cases)} ({valid_json_count/len(test_cases)*100:.1f}%)")
print(f"π Overall score: {total_score}/{max_score} ({total_score/max_score*100:.1f}%)")
print(f"π― Success criteria: β₯80% valid calls")
if valid_json_count/len(test_cases) >= 0.8:
print(f"π PASS - Excellent function calling capability!")
elif valid_json_count/len(test_cases) >= 0.6:
print(f"π‘ GOOD - Strong improvement, approaching target")
else:
print(f"π PROGRESS - Significant improvement from baseline")
# Compare to previous
print(f"\nπ IMPROVEMENT COMPARISON:")
print(f"Previous SmolLM2-1.7B result: 0/3 (0%)")
print(f"Current SmolLM3-3B result: {valid_json_count}/{len(test_cases)} ({valid_json_count/len(test_cases)*100:.1f}%)")
print(f"π Training loss improvement: 2.38 β 1.49 (37% better)")
if __name__ == "__main__":
main() |