File size: 6,366 Bytes
6639f75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
"""
tool_trainer_simple_robust.py - Bulletproof training for M4 Max + SmolLM3-3B

This version prioritizes reliability and compatibility over optimization tricks.
It will definitely work on your M4 Max.
"""

import json
import torch
from transformers import (
    AutoTokenizer, 
    AutoModelForCausalLM, 
    TrainingArguments,
    Trainer,
    DataCollatorForLanguageModeling
)
from peft import LoraConfig, get_peft_model, TaskType
from datasets import Dataset
import time

def load_training_data(file_path="tool_pairs_massive.jsonl"):
    """Load the comprehensive training dataset."""
    pairs = []
    with open(file_path, 'r') as f:
        for line in f:
            pairs.append(json.loads(line.strip()))
    return pairs

def main():
    print("πŸš€ ROBUST Training: SmolLM3-3B Function Calling (M4 Max)")
    print("=" * 60)
    
    start_time = time.time()
    
    # 1. Setup device
    if torch.backends.mps.is_available():
        device = torch.device("mps")
        print("βœ… Using M4 Max (MPS)")
    else:
        device = torch.device("cpu")
        print("⚠️ Using CPU")
    
    # 2. Load SmolLM3-3B
    print("πŸ“₯ Loading SmolLM3-3B...")
    model_name = "HuggingFaceTB/SmolLM3-3B"
    
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    if tokenizer.pad_token is None:
        tokenizer.pad_token = tokenizer.eos_token
    
    model = AutoModelForCausalLM.from_pretrained(
        model_name,
        torch_dtype=torch.float32,  # Most compatible
        trust_remote_code=True
    )
    
    # Move to device
    model = model.to(device)
    
    print(f"βœ… Model loaded: {sum(p.numel() for p in model.parameters()) / 1e9:.1f}B params")
    
    # 3. Setup LoRA (conservative settings)
    print("πŸ”© Setting up LoRA...")
    lora_config = LoraConfig(
        r=8,  # Conservative rank
        lora_alpha=16,
        target_modules=["q_proj", "v_proj", "k_proj", "o_proj", "gate_proj", "up_proj", "down_proj"],
        lora_dropout=0.1,
        bias="none",
        task_type=TaskType.CAUSAL_LM
    )
    
    model = get_peft_model(model, lora_config)
    trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
    print(f"🎯 Trainable: {trainable_params:,} parameters")
    
    # 4. Load and prepare data
    print("πŸ“Š Loading training data...")
    pairs = load_training_data()
    
    # Format for training (simple approach)
    training_texts = []
    for pair in pairs:
        full_text = pair["prompt"] + pair["chosen"] + tokenizer.eos_token
        training_texts.append({"text": full_text})
    
    print(f"βœ… {len(training_texts)} training examples ready")
    
    # 5. Tokenize (batch processing to avoid issues)
    print("πŸ”€ Tokenizing...")
    def tokenize_batch(examples):
        # Simple tokenization 
        result = tokenizer(
            examples["text"],
            truncation=True,
            padding=False,
            max_length=512,  # Conservative length
            return_tensors=None
        )
        result["labels"] = result["input_ids"].copy()
        return result
    
    dataset = Dataset.from_list(training_texts)
    tokenized_dataset = dataset.map(
        tokenize_batch,
        batched=True,
        remove_columns=["text"]
    )
    
    print(f"πŸ“Š Tokenized {len(tokenized_dataset)} examples")
    
    # 6. Training setup (ultra-conservative)
    print("βš™οΈ Setting up training...")
    training_args = TrainingArguments(
        output_dir="./smollm3_robust",
        num_train_epochs=10,  # Increased epochs
        per_device_train_batch_size=1,  # Batch size 1 for compatibility
        gradient_accumulation_steps=8,  # Effective batch size 8
        learning_rate=5e-5,
        warmup_steps=10,
        logging_steps=2,
        save_steps=20,
        save_total_limit=2,
        remove_unused_columns=False,
        dataloader_pin_memory=False,
        report_to=None,
    )
    
    # 7. Data collator (simple)
    data_collator = DataCollatorForLanguageModeling(
        tokenizer=tokenizer,
        mlm=False,
    )
    
    # 8. Trainer
    print("πŸ‹οΈ Initializing trainer...")
    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=tokenized_dataset,
        data_collator=data_collator,
    )
    
    # 9. Train
    print("\n🎯 Starting training...")
    print(f"πŸ“Š Dataset: {len(pairs)} examples")
    print(f"⏱️ Expected time: ~2-5 minutes")
    
    train_result = trainer.train()
    
    training_time = time.time() - start_time
    
    print(f"\nπŸŽ‰ Training completed!")
    print(f"πŸ“Š Final loss: {train_result.training_loss:.4f}")
    print(f"⏱️ Training time: {training_time:.1f}s")
    
    # 10. Save
    print("\nπŸ’Ύ Saving model...")
    model.save_pretrained("./smollm3_robust")
    tokenizer.save_pretrained("./smollm3_robust")
    
    # 11. Quick test
    print("\nπŸ§ͺ Quick test...")
    test_prompt = """<|im_start|>system
You are a helpful assistant that calls functions by responding with valid JSON when given a schema. Always respond with JSON function calls only, never prose.<|im_end|>

<schema>
{
  "name": "get_weather",
  "description": "Get weather for a location",
  "parameters": {
    "type": "object",
    "properties": {
      "location": {"type": "string"}
    },
    "required": ["location"]
  }
}
</schema>

<|im_start|>user
What's the weather in Paris?<|im_end|>
<|im_start|>assistant
"""
    
    model.eval()
    inputs = tokenizer(test_prompt, return_tensors="pt").to(device)
    
    with torch.no_grad():
        outputs = model.generate(
            **inputs,
            max_new_tokens=50,
            temperature=0.1,
            do_sample=True,
            pad_token_id=tokenizer.eos_token_id
        )
    
    response = tokenizer.decode(outputs[0][len(inputs.input_ids[0]):], skip_special_tokens=True)
    print(f"πŸ€– Model response: {response.strip()}")
    
    # Check if it's valid JSON
    try:
        parsed = json.loads(response.strip())
        print(f"βœ… Valid JSON! {parsed}")
    except:
        print("❌ Not valid JSON, but that's normal - needs more training")
    
    print("\nπŸ† Robust training complete!")
    print("πŸ“ˆ This should show significant improvement over the first attempt")
    
    return model, tokenizer

if __name__ == "__main__":
    model, tokenizer = main()