|
""" |
|
tool_trainer_simple.py - Fine-tune SmolLM2-1.7B for dynamic function calling using LoRA |
|
|
|
This script uses supervised fine-tuning (SFT) instead of DPO, which is simpler and more |
|
compatible with current library versions while still teaching JSON-only responses. |
|
|
|
Key hyperparameters: |
|
- LoRA rank: 8 (small adapter for efficiency) |
|
- Epochs: 3 (enough to learn pattern without overfitting) |
|
- Learning rate: 5e-5 (conservative for stability) |
|
""" |
|
|
|
import json |
|
import torch |
|
from transformers import ( |
|
AutoTokenizer, |
|
AutoModelForCausalLM, |
|
TrainingArguments, |
|
Trainer, |
|
DataCollatorForLanguageModeling |
|
) |
|
from peft import LoraConfig, get_peft_model, TaskType |
|
from datasets import Dataset |
|
import os |
|
|
|
def load_preference_pairs(file_path="tool_pairs.jsonl"): |
|
"""Load and parse the JSONL preference pairs.""" |
|
pairs = [] |
|
with open(file_path, 'r') as f: |
|
for line in f: |
|
pairs.append(json.loads(line.strip())) |
|
return pairs |
|
|
|
def format_for_sft(pairs, tokenizer): |
|
"""Convert pairs to SFT format - use only the 'chosen' responses.""" |
|
formatted = [] |
|
for pair in pairs: |
|
|
|
full_text = pair["prompt"] + pair["chosen"] + tokenizer.eos_token |
|
formatted.append({"text": full_text}) |
|
return formatted |
|
|
|
def tokenize_function(examples, tokenizer, max_length=512): |
|
"""Tokenize the training examples.""" |
|
|
|
tokenized = tokenizer( |
|
examples["text"], |
|
truncation=True, |
|
padding=False, |
|
max_length=max_length, |
|
return_tensors=None |
|
) |
|
|
|
|
|
tokenized["labels"] = tokenized["input_ids"].copy() |
|
return tokenized |
|
|
|
def main(): |
|
print("π Starting Dynamic Function-Calling Agent Training (SFT)") |
|
print("=" * 60) |
|
|
|
|
|
print("π₯ Loading SmolLM2-1.7B model and tokenizer...") |
|
model_name = "HuggingFaceTB/SmolLM2-1.7B-Instruct" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
if tokenizer.pad_token is None: |
|
tokenizer.pad_token = tokenizer.eos_token |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_name, |
|
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, |
|
device_map="auto" if torch.cuda.is_available() else None, |
|
trust_remote_code=True |
|
) |
|
|
|
print(f"β
Loaded model: {model_name}") |
|
print(f"π§ Model dtype: {model.dtype}") |
|
print(f"πΎ Model size: ~{sum(p.numel() for p in model.parameters()) / 1e6:.1f}M parameters") |
|
|
|
|
|
print("\nπ© Setting up LoRA adapter (rank 8)...") |
|
lora_config = LoraConfig( |
|
r=8, |
|
lora_alpha=16, |
|
target_modules=["q_proj", "v_proj", "k_proj", "o_proj", "gate_proj", "up_proj", "down_proj"], |
|
lora_dropout=0.1, |
|
bias="none", |
|
task_type=TaskType.CAUSAL_LM |
|
) |
|
|
|
model = get_peft_model(model, lora_config) |
|
trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad) |
|
total_params = sum(p.numel() for p in model.parameters()) |
|
|
|
print(f"β
LoRA adapter attached") |
|
print(f"π― Trainable parameters: {trainable_params:,} ({trainable_params/total_params*100:.2f}%)") |
|
|
|
|
|
print("\nπ Loading preference pairs...") |
|
pairs = load_preference_pairs() |
|
formatted_pairs = format_for_sft(pairs, tokenizer) |
|
|
|
print(f"β
Loaded {len(pairs)} preference pairs") |
|
print("π Sample training text:") |
|
print(formatted_pairs[0]["text"][:200] + "...") |
|
|
|
|
|
train_dataset = Dataset.from_list(formatted_pairs) |
|
tokenized_dataset = train_dataset.map( |
|
lambda x: tokenize_function(x, tokenizer), |
|
batched=True, |
|
remove_columns=train_dataset.column_names |
|
) |
|
|
|
print(f"π Tokenized dataset size: {len(tokenized_dataset)} examples") |
|
|
|
|
|
print("\nβοΈ Configuring training (3 epochs)...") |
|
training_args = TrainingArguments( |
|
output_dir="./smollm_tool_adapter", |
|
num_train_epochs=3, |
|
per_device_train_batch_size=1, |
|
gradient_accumulation_steps=4, |
|
learning_rate=5e-5, |
|
warmup_steps=10, |
|
logging_steps=1, |
|
save_steps=50, |
|
save_total_limit=2, |
|
remove_unused_columns=False, |
|
fp16=torch.cuda.is_available(), |
|
dataloader_pin_memory=False, |
|
report_to=None, |
|
logging_dir="./logs" |
|
) |
|
|
|
|
|
data_collator = DataCollatorForLanguageModeling( |
|
tokenizer=tokenizer, |
|
mlm=False, |
|
) |
|
|
|
|
|
print("ποΈ Initializing trainer...") |
|
trainer = Trainer( |
|
model=model, |
|
args=training_args, |
|
train_dataset=tokenized_dataset, |
|
data_collator=data_collator, |
|
) |
|
|
|
print("β
Trainer ready") |
|
|
|
|
|
print("\nπ― Starting training...") |
|
print("β±οΈ This should take ~8-15 minutes on M4 Max, longer on CPU") |
|
|
|
|
|
print("π Beginning training...") |
|
train_result = trainer.train() |
|
|
|
print("\nπ Training completed!") |
|
print(f"π Final training loss: {train_result.training_loss:.4f}") |
|
print(f"β±οΈ Training time: {train_result.metrics.get('train_runtime', 0):.1f} seconds") |
|
|
|
|
|
print("\nπΎ Saving model adapter...") |
|
model.save_pretrained("./smollm_tool_adapter") |
|
tokenizer.save_pretrained("./smollm_tool_adapter") |
|
|
|
print("β
Model saved to './smollm_tool_adapter'") |
|
print("π Training complete! Ready for testing.") |
|
|
|
|
|
print("\nπ§ͺ Quick functionality test...") |
|
test_prompt = """<|im_start|>system |
|
You are a helpful assistant that calls functions by responding with valid JSON when given a schema. Always respond with JSON function calls only, never prose.<|im_end|> |
|
|
|
<schema> |
|
{ |
|
"name": "get_stock_price", |
|
"description": "Return the latest price for a given ticker symbol.", |
|
"parameters": { |
|
"type": "object", |
|
"properties": { |
|
"ticker": {"type": "string"} |
|
}, |
|
"required": ["ticker"] |
|
} |
|
} |
|
</schema> |
|
|
|
<|im_start|>user |
|
What's Microsoft trading at?<|im_end|> |
|
<|im_start|>assistant |
|
""" |
|
|
|
inputs = tokenizer(test_prompt, return_tensors="pt") |
|
with torch.no_grad(): |
|
outputs = model.generate( |
|
**inputs, |
|
max_new_tokens=50, |
|
temperature=0.1, |
|
do_sample=True, |
|
pad_token_id=tokenizer.eos_token_id |
|
) |
|
|
|
response = tokenizer.decode(outputs[0][len(inputs.input_ids[0]):], skip_special_tokens=True) |
|
print(f"π€ Model response: {response.strip()}") |
|
|
|
return model, tokenizer |
|
|
|
if __name__ == "__main__": |
|
model, tokenizer = main() |