jlov7 commited on
Commit
5410dc5
Β·
1 Parent(s): beb266c

fix: use base model for demo (remove LoRA adapter dependency)

Browse files
Files changed (2) hide show
  1. requirements.txt +0 -1
  2. test_constrained_model.py +5 -6
requirements.txt CHANGED
@@ -1,6 +1,5 @@
1
  torch>=2.0.0
2
  transformers>=4.30.0
3
- peft>=0.4.0
4
  jsonschema>=4.0.0
5
  datasets>=2.0.0
6
  gradio>=5.0.0
 
1
  torch>=2.0.0
2
  transformers>=4.30.0
 
3
  jsonschema>=4.0.0
4
  datasets>=2.0.0
5
  gradio>=5.0.0
test_constrained_model.py CHANGED
@@ -9,13 +9,13 @@ import torch
9
  import json
10
  import jsonschema
11
  from transformers import AutoTokenizer, AutoModelForCausalLM
12
- from peft import PeftModel
13
  from typing import Dict, List
14
  import time
15
 
16
  def load_trained_model():
17
  """Load our intensively trained model."""
18
- print("πŸ”„ Loading intensively trained SmolLM3-3B...")
19
 
20
  # Load base model
21
  base_model_name = "HuggingFaceTB/SmolLM3-3B"
@@ -29,10 +29,9 @@ def load_trained_model():
29
  device_map="mps" if torch.backends.mps.is_available() else "auto"
30
  )
31
 
32
- # Load LoRA weights
33
- print("πŸ”§ Loading LoRA adapter...")
34
- model = PeftModel.from_pretrained(model, "./smollm3_robust")
35
- model = model.merge_and_unload() # Merge for faster inference
36
 
37
  print("βœ… Trained model loaded successfully")
38
  return model, tokenizer
 
9
  import json
10
  import jsonschema
11
  from transformers import AutoTokenizer, AutoModelForCausalLM
12
+ # from peft import PeftModel # Not needed for base model demo
13
  from typing import Dict, List
14
  import time
15
 
16
  def load_trained_model():
17
  """Load our intensively trained model."""
18
+ print("πŸ”„ Loading SmolLM3-3B (base model for demo)...")
19
 
20
  # Load base model
21
  base_model_name = "HuggingFaceTB/SmolLM3-3B"
 
29
  device_map="mps" if torch.backends.mps.is_available() else "auto"
30
  )
31
 
32
+ # Note: Using base model for demo (LoRA adapter not included to keep repo size small)
33
+ print("πŸ”§ Using base model (LoRA adapter excluded for size constraints)...")
34
+ # For production deployment, upload LoRA adapter to HF Hub and load from there
 
35
 
36
  print("βœ… Trained model loaded successfully")
37
  return model, tokenizer