fix: use base model for demo (remove LoRA adapter dependency)
Browse files- requirements.txt +0 -1
- test_constrained_model.py +5 -6
requirements.txt
CHANGED
@@ -1,6 +1,5 @@
|
|
1 |
torch>=2.0.0
|
2 |
transformers>=4.30.0
|
3 |
-
peft>=0.4.0
|
4 |
jsonschema>=4.0.0
|
5 |
datasets>=2.0.0
|
6 |
gradio>=5.0.0
|
|
|
1 |
torch>=2.0.0
|
2 |
transformers>=4.30.0
|
|
|
3 |
jsonschema>=4.0.0
|
4 |
datasets>=2.0.0
|
5 |
gradio>=5.0.0
|
test_constrained_model.py
CHANGED
@@ -9,13 +9,13 @@ import torch
|
|
9 |
import json
|
10 |
import jsonschema
|
11 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
12 |
-
from peft import PeftModel
|
13 |
from typing import Dict, List
|
14 |
import time
|
15 |
|
16 |
def load_trained_model():
|
17 |
"""Load our intensively trained model."""
|
18 |
-
print("π Loading
|
19 |
|
20 |
# Load base model
|
21 |
base_model_name = "HuggingFaceTB/SmolLM3-3B"
|
@@ -29,10 +29,9 @@ def load_trained_model():
|
|
29 |
device_map="mps" if torch.backends.mps.is_available() else "auto"
|
30 |
)
|
31 |
|
32 |
-
#
|
33 |
-
print("π§
|
34 |
-
|
35 |
-
model = model.merge_and_unload() # Merge for faster inference
|
36 |
|
37 |
print("β
Trained model loaded successfully")
|
38 |
return model, tokenizer
|
|
|
9 |
import json
|
10 |
import jsonschema
|
11 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
12 |
+
# from peft import PeftModel # Not needed for base model demo
|
13 |
from typing import Dict, List
|
14 |
import time
|
15 |
|
16 |
def load_trained_model():
|
17 |
"""Load our intensively trained model."""
|
18 |
+
print("π Loading SmolLM3-3B (base model for demo)...")
|
19 |
|
20 |
# Load base model
|
21 |
base_model_name = "HuggingFaceTB/SmolLM3-3B"
|
|
|
29 |
device_map="mps" if torch.backends.mps.is_available() else "auto"
|
30 |
)
|
31 |
|
32 |
+
# Note: Using base model for demo (LoRA adapter not included to keep repo size small)
|
33 |
+
print("π§ Using base model (LoRA adapter excluded for size constraints)...")
|
34 |
+
# For production deployment, upload LoRA adapter to HF Hub and load from there
|
|
|
35 |
|
36 |
print("β
Trained model loaded successfully")
|
37 |
return model, tokenizer
|