""" schema_tester.py - Official Schema Testing System This script iterates over all schemas in schemas/, prompts the trained model, validates output with jsonschema, and prints comprehensive pass/fail results. Matches the exact specification from the user's requirements. """ import os import json import torch from pathlib import Path from transformers import AutoTokenizer, AutoModelForCausalLM from peft import PeftModel import jsonschema from jsonschema import validate, ValidationError import random class SchemaValidator: """Handles JSON schema validation.""" @staticmethod def validate_function_call(response, schema): """Validate if response matches expected function call structure.""" try: # Parse the JSON response call_data = json.loads(response) # Check basic structure if not isinstance(call_data, dict): return False, "Response is not a JSON object" if "name" not in call_data: return False, "Missing 'name' field" if "arguments" not in call_data: return False, "Missing 'arguments' field" # Check function name matches if call_data["name"] != schema["name"]: return False, f"Function name mismatch: expected '{schema['name']}', got '{call_data['name']}'" # Validate arguments against schema try: validate(instance=call_data["arguments"], schema=schema["parameters"]) return True, "Valid function call" except ValidationError as e: return False, f"Argument validation failed: {e.message}" except json.JSONDecodeError as e: return False, f"Invalid JSON: {e}" class ModelTester: """Handles model loading and testing.""" def __init__(self, model_path="./smollm3_robust"): self.model_path = model_path self.model = None self.tokenizer = None self.device = None self._load_model() def _load_model(self): """Load the trained model.""" print("๐Ÿ”„ Loading trained SmolLM3-3B model...") base_model_name = "HuggingFaceTB/SmolLM3-3B" # Load tokenizer self.tokenizer = AutoTokenizer.from_pretrained(base_model_name) if self.tokenizer.pad_token is None: self.tokenizer.pad_token = self.tokenizer.eos_token # Load base model base_model = AutoModelForCausalLM.from_pretrained( base_model_name, torch_dtype=torch.float32, trust_remote_code=True ) # Load trained adapter self.model = PeftModel.from_pretrained(base_model, self.model_path) # Setup device if torch.backends.mps.is_available(): self.model = self.model.to("mps") self.device = "mps" else: self.device = "cpu" print(f"โœ… Model loaded on {self.device}") def test_schema(self, schema, question): """Test the model on a specific schema and question.""" prompt = f"""<|im_start|>system You are a helpful assistant that calls functions by responding with valid JSON when given a schema. Always respond with JSON function calls only, never prose.<|im_end|> {json.dumps(schema, indent=2)} <|im_start|>user {question}<|im_end|> <|im_start|>assistant """ # Tokenize inputs = self.tokenizer(prompt, return_tensors="pt") if self.device == "mps": inputs = {k: v.to(self.device) for k, v in inputs.items()} # Generate self.model.eval() with torch.no_grad(): outputs = self.model.generate( **inputs, max_new_tokens=150, temperature=0.1, do_sample=True, pad_token_id=self.tokenizer.eos_token_id, eos_token_id=self.tokenizer.eos_token_id ) # Decode response input_length = inputs["input_ids"].shape[1] response = self.tokenizer.decode(outputs[0][input_length:], skip_special_tokens=True) # Clean up response (handle common trailing issues) response = response.strip() if response.endswith('}"}'): response = response[:-2] if response.endswith('}}'): response = response[:-1] return response def load_schemas(schemas_dir="schemas"): """Load all schema files from the schemas directory.""" schemas = {} schema_files = Path(schemas_dir).glob("*.json") for schema_file in schema_files: try: with open(schema_file, 'r') as f: schema_data = json.load(f) schemas[schema_file.stem] = schema_data except Exception as e: print(f"โš ๏ธ Error loading {schema_file}: {e}") return schemas def run_comprehensive_test(): """Run the complete schema testing suite.""" print("๐Ÿงช Official Schema Testing System") print("=" * 50) # Load schemas print("๐Ÿ“ Loading evaluation schemas...") schemas = load_schemas() if not schemas: print("โŒ No schemas found in schemas/ directory") return print(f"โœ… Loaded {len(schemas)} schemas: {', '.join(schemas.keys())}") # Initialize model tester tester = ModelTester() validator = SchemaValidator() # Test results tracking results = {} total_tests = 0 total_passed = 0 print(f"\n๐ŸŽฏ Running tests on all schemas...") print("-" * 50) # Test each schema for schema_name, schema_data in schemas.items(): print(f"\n๐Ÿ“‹ Testing Schema: {schema_name}") print(f"๐Ÿ”ง Function: {schema_data['name']}") # Get test questions test_questions = schema_data.get('test_questions', []) if not test_questions: print("โš ๏ธ No test questions found, skipping") continue schema_results = [] # Test each question for this schema for i, question in enumerate(test_questions, 1): print(f"\nโ“ Test {i}: {question}") # Get model response response = tester.test_schema(schema_data, question) print(f"๐Ÿค– Response: {response}") # Validate response is_valid, error_msg = validator.validate_function_call(response, schema_data) if is_valid: print(f"โœ… PASS - {error_msg}") schema_results.append(True) total_passed += 1 else: print(f"โŒ FAIL - {error_msg}") schema_results.append(False) total_tests += 1 # Schema summary schema_passed = sum(schema_results) schema_total = len(schema_results) schema_rate = schema_passed / schema_total * 100 results[schema_name] = { 'passed': schema_passed, 'total': schema_total, 'rate': schema_rate, 'results': schema_results } print(f"๐Ÿ“Š Schema Summary: {schema_passed}/{schema_total} ({schema_rate:.1f}%)") # Overall results print(f"\n" + "=" * 50) print(f"๐Ÿ“Š OVERALL RESULTS") print(f"=" * 50) overall_rate = total_passed / total_tests * 100 print(f"โœ… Total passed: {total_passed}/{total_tests} ({overall_rate:.1f}%)") print(f"๐ŸŽฏ Target: โ‰ฅ80% valid calls") # Detailed breakdown print(f"\n๐Ÿ“‹ Detailed Breakdown:") for schema_name, result in results.items(): status = "โœ… PASS" if result['rate'] >= 80 else "โŒ FAIL" print(f" {schema_name}: {result['passed']}/{result['total']} ({result['rate']:.1f}%) {status}") # Success evaluation if overall_rate >= 80: print(f"\n๐Ÿ† SUCCESS! Model meets the โ‰ฅ80% target") print(f"๐Ÿš€ Ready for enterprise deployment") else: print(f"\n๐Ÿ”„ IMPROVEMENT NEEDED") print(f"๐Ÿ“ˆ Current: {overall_rate:.1f}% | Target: โ‰ฅ80%") print(f"๐Ÿ’ก Suggestions:") # Analyze failure patterns failed_schemas = [name for name, result in results.items() if result['rate'] < 80] if failed_schemas: print(f" 1. Focus training on: {', '.join(failed_schemas)}") print(f" 2. Add more examples for complex parameter schemas") print(f" 3. Increase training epochs or learning rate") print(f" 4. Consider using larger LoRA rank (r=16)") print(f" 5. Generate more diverse training examples") return results, overall_rate def main(): """Main entry point.""" try: results, rate = run_comprehensive_test() # Save results with open("test_results.json", "w") as f: json.dump({ "overall_rate": rate, "results": results, "timestamp": str(torch.cuda.current_device() if torch.cuda.is_available() else "cpu") }, f, indent=2) print(f"\n๐Ÿ’พ Results saved to test_results.json") except Exception as e: print(f"โŒ Testing failed: {e}") raise if __name__ == "__main__": main()