"""
generate_training_data.py - Generate comprehensive training data for function calling
This script creates 100+ diverse preference pairs covering many different schema types
and patterns to teach robust zero-shot function calling.
"""
import json
import random
from typing import List, Dict
def create_training_pair(schema: Dict, question: str, good_response: str, bad_response: str) -> Dict:
"""Create a single training pair in the correct format."""
prompt = f"""<|im_start|>system
You are a helpful assistant that calls functions by responding with valid JSON when given a schema. Always respond with JSON function calls only, never prose.<|im_end|>
{json.dumps(schema, indent=2)}
<|im_start|>user
{question}<|im_end|>
<|im_start|>assistant
"""
return {
"prompt": prompt,
"chosen": good_response,
"rejected": bad_response
}
def generate_diverse_schemas_and_pairs() -> List[Dict]:
"""Generate a comprehensive set of training pairs."""
pairs = []
# 1. FINANCIAL SCHEMAS (15 pairs)
financial_schemas = [
{
"name": "get_stock_price",
"description": "Get current stock price for a ticker",
"parameters": {
"type": "object",
"properties": {"ticker": {"type": "string"}},
"required": ["ticker"]
}
},
{
"name": "transfer_money",
"description": "Transfer money between accounts",
"parameters": {
"type": "object",
"properties": {
"from_account": {"type": "string"},
"to_account": {"type": "string"},
"amount": {"type": "number"},
"currency": {"type": "string"}
},
"required": ["from_account", "to_account", "amount"]
}
},
{
"name": "calculate_compound_interest",
"description": "Calculate compound interest on investment",
"parameters": {
"type": "object",
"properties": {
"principal": {"type": "number"},
"rate": {"type": "number"},
"time": {"type": "number"},
"frequency": {"type": "integer"}
},
"required": ["principal", "rate", "time"]
}
}
]
financial_questions = [
("What's Tesla stock trading at?", "TSLA"),
("Check the price of Bitcoin", "BTC-USD"),
("What's Apple's current price?", "AAPL"),
("How much is Microsoft worth?", "MSFT"),
("Get Netflix stock price", "NFLX")
]
for q, ticker in financial_questions:
pairs.append(create_training_pair(
financial_schemas[0], q,
f'{{"name": "get_stock_price", "arguments": {{"ticker": "{ticker}"}}}}',
f"I'll check the current stock price for {ticker}. Let me get that information for you."
))
# Money transfer examples
transfer_examples = [
("Send $500 from my checking to savings", "checking", "savings", 500),
("Transfer 1000 euros from account A to account B", "A", "B", 1000),
("Move $250 from wallet to investment account", "wallet", "investment", 250)
]
for q, from_acc, to_acc, amount in transfer_examples:
pairs.append(create_training_pair(
financial_schemas[1], q,
f'{{"name": "transfer_money", "arguments": {{"from_account": "{from_acc}", "to_account": "{to_acc}", "amount": {amount}}}}}',
f"I'll help you transfer ${amount} from {from_acc} to {to_acc}. Let me process that transaction."
))
# 2. COMMUNICATION SCHEMAS (20 pairs)
comm_schemas = [
{
"name": "send_email",
"description": "Send an email message",
"parameters": {
"type": "object",
"properties": {
"to": {"type": "string"},
"subject": {"type": "string"},
"body": {"type": "string"},
"cc": {"type": "array", "items": {"type": "string"}}
},
"required": ["to", "subject", "body"]
}
},
{
"name": "send_sms",
"description": "Send SMS text message",
"parameters": {
"type": "object",
"properties": {
"phone": {"type": "string"},
"message": {"type": "string"}
},
"required": ["phone", "message"]
}
},
{
"name": "schedule_meeting",
"description": "Schedule a meeting with participants",
"parameters": {
"type": "object",
"properties": {
"title": {"type": "string"},
"participants": {"type": "array", "items": {"type": "string"}},
"datetime": {"type": "string"},
"duration": {"type": "integer"}
},
"required": ["title", "participants", "datetime"]
}
}
]
email_examples = [
("Email John about the project deadline", "john@company.com", "Project Deadline", "Hi John, wanted to discuss the upcoming project deadline."),
("Send Sarah the meeting notes", "sarah@team.com", "Meeting Notes", "Hi Sarah, here are the notes from today's meeting."),
("Message the team about tomorrow's standup", "team@company.com", "Standup Tomorrow", "Reminder: standup meeting tomorrow at 9am.")
]
for q, to, subject, body in email_examples:
pairs.append(create_training_pair(
comm_schemas[0], q,
f'{{"name": "send_email", "arguments": {{"to": "{to}", "subject": "{subject}", "body": "{body}"}}}}',
f"I'll send an email to {to} with the subject '{subject}'. Let me compose that message for you."
))
# SMS examples
sms_examples = [
("Text mom that I'll be late", "+1234567890", "Running late, will be there in 20 minutes"),
("Send SMS to 555-0123 saying meeting is cancelled", "555-0123", "Meeting cancelled"),
("Message Bob at +1987654321 about dinner plans", "+1987654321", "Are we still on for dinner tonight?")
]
for q, phone, message in sms_examples:
pairs.append(create_training_pair(
comm_schemas[1], q,
f'{{"name": "send_sms", "arguments": {{"phone": "{phone}", "message": "{message}"}}}}',
f"I'll send a text message to {phone}. Let me send that SMS for you."
))
# 3. DATA & ANALYTICS SCHEMAS (15 pairs)
data_schemas = [
{
"name": "query_database",
"description": "Execute SQL query on database",
"parameters": {
"type": "object",
"properties": {
"query": {"type": "string"},
"database": {"type": "string"},
"limit": {"type": "integer"}
},
"required": ["query"]
}
},
{
"name": "generate_report",
"description": "Generate analytics report",
"parameters": {
"type": "object",
"properties": {
"report_type": {"type": "string"},
"date_range": {"type": "string"},
"metrics": {"type": "array", "items": {"type": "string"}}
},
"required": ["report_type", "date_range"]
}
}
]
query_examples = [
("Find all users who signed up last week", "SELECT * FROM users WHERE created_at >= DATE_SUB(NOW(), INTERVAL 1 WEEK)"),
("Get top 10 selling products", "SELECT product_name, SUM(quantity) as total_sales FROM orders GROUP BY product_name ORDER BY total_sales DESC LIMIT 10"),
("Show revenue by month this year", "SELECT MONTH(order_date) as month, SUM(total) as revenue FROM orders WHERE YEAR(order_date) = YEAR(NOW()) GROUP BY MONTH(order_date)")
]
for q, query in query_examples:
pairs.append(create_training_pair(
data_schemas[0], q,
f'{{"name": "query_database", "arguments": {{"query": "{query}"}}}}',
f"I'll run a database query to {q.lower()}. Let me execute that SQL for you."
))
# 4. FILE & SYSTEM OPERATIONS (15 pairs)
file_schemas = [
{
"name": "create_file",
"description": "Create a new file with content",
"parameters": {
"type": "object",
"properties": {
"filename": {"type": "string"},
"content": {"type": "string"},
"encoding": {"type": "string"}
},
"required": ["filename", "content"]
}
},
{
"name": "backup_files",
"description": "Backup files to specified location",
"parameters": {
"type": "object",
"properties": {
"source_path": {"type": "string"},
"backup_path": {"type": "string"},
"compression": {"type": "boolean"}
},
"required": ["source_path", "backup_path"]
}
}
]
file_examples = [
("Create a file called report.txt with the quarterly results", "report.txt", "Q3 2024 Quarterly Results\n\nRevenue: $2.5M\nGrowth: 15%"),
("Make a new file notes.md with meeting summary", "notes.md", "# Meeting Summary\n\n- Discussed project timeline\n- Reviewed budget\n- Next steps assigned"),
("Create config.json with default settings", "config.json", '{"debug": false, "port": 8080, "host": "localhost"}')
]
for q, filename, content in file_examples:
pairs.append(create_training_pair(
file_schemas[0], q,
f'{{"name": "create_file", "arguments": {{"filename": "{filename}", "content": "{content}"}}}}',
f"I'll create the file {filename} with your content. Let me write that file for you."
))
# 5. WEATHER & LOCATION SCHEMAS (10 pairs)
location_schemas = [
{
"name": "get_weather",
"description": "Get weather information for location",
"parameters": {
"type": "object",
"properties": {
"location": {"type": "string"},
"units": {"type": "string", "enum": ["celsius", "fahrenheit"]},
"forecast_days": {"type": "integer"}
},
"required": ["location"]
}
},
{
"name": "find_restaurants",
"description": "Find restaurants near location",
"parameters": {
"type": "object",
"properties": {
"location": {"type": "string"},
"cuisine": {"type": "string"},
"rating_min": {"type": "number"}
},
"required": ["location"]
}
}
]
weather_examples = [
("What's the weather in San Francisco?", "San Francisco"),
("Check weather for Tokyo in celsius", "Tokyo"),
("How's the weather in London today?", "London")
]
for q, location in weather_examples:
pairs.append(create_training_pair(
location_schemas[0], q,
f'{{"name": "get_weather", "arguments": {{"location": "{location}"}}}}',
f"I'll check the current weather conditions in {location} for you."
))
# 6. CALCULATION & UTILITY SCHEMAS (15 pairs)
calc_schemas = [
{
"name": "calculate_tip",
"description": "Calculate tip amount for bill",
"parameters": {
"type": "object",
"properties": {
"bill_amount": {"type": "number"},
"tip_percentage": {"type": "number"},
"split_ways": {"type": "integer"}
},
"required": ["bill_amount", "tip_percentage"]
}
},
{
"name": "convert_currency",
"description": "Convert between currencies",
"parameters": {
"type": "object",
"properties": {
"amount": {"type": "number"},
"from_currency": {"type": "string"},
"to_currency": {"type": "string"}
},
"required": ["amount", "from_currency", "to_currency"]
}
},
{
"name": "calculate_distance",
"description": "Calculate distance between two points",
"parameters": {
"type": "object",
"properties": {
"from_location": {"type": "string"},
"to_location": {"type": "string"},
"unit": {"type": "string", "enum": ["miles", "kilometers"]}
},
"required": ["from_location", "to_location"]
}
}
]
tip_examples = [
("What's 20% tip on $85?", 85, 20),
("Calculate 15% tip for a $42 bill", 42, 15),
("How much tip for $156 at 18%?", 156, 18)
]
for q, amount, tip in tip_examples:
pairs.append(create_training_pair(
calc_schemas[0], q,
f'{{"name": "calculate_tip", "arguments": {{"bill_amount": {amount}, "tip_percentage": {tip}}}}}',
f"I'll calculate the {tip}% tip on ${amount} for you. Let me do that math."
))
# 7. SCHEDULING & REMINDERS (10 pairs)
schedule_schemas = [
{
"name": "create_reminder",
"description": "Create a reminder for specific time",
"parameters": {
"type": "object",
"properties": {
"title": {"type": "string"},
"datetime": {"type": "string"},
"priority": {"type": "string", "enum": ["low", "medium", "high"]}
},
"required": ["title", "datetime"]
}
},
{
"name": "book_appointment",
"description": "Book appointment with service provider",
"parameters": {
"type": "object",
"properties": {
"service": {"type": "string"},
"provider": {"type": "string"},
"datetime": {"type": "string"},
"duration": {"type": "integer"}
},
"required": ["service", "datetime"]
}
}
]
reminder_examples = [
("Remind me to call mom tomorrow at 6pm", "Call mom", "tomorrow 6pm"),
("Set reminder for dentist appointment Friday 2pm", "Dentist appointment", "Friday 2pm"),
("Remind me about the meeting on Monday 9am", "Team meeting", "Monday 9am")
]
for q, title, datetime in reminder_examples:
pairs.append(create_training_pair(
schedule_schemas[0], q,
f'{{"name": "create_reminder", "arguments": {{"title": "{title}", "datetime": "{datetime}"}}}}',
f"I'll set up a reminder for {title} at {datetime}."
))
return pairs
def main():
"""Generate and save comprehensive training data."""
print("š Generating comprehensive training data...")
pairs = generate_diverse_schemas_and_pairs()
print(f"ā
Generated {len(pairs)} training pairs")
print("š Coverage:")
print(" - Financial operations: 15 pairs")
print(" - Communication: 20 pairs")
print(" - Data analytics: 15 pairs")
print(" - File operations: 15 pairs")
print(" - Weather/location: 10 pairs")
print(" - Calculations: 15 pairs")
print(" - Scheduling: 10 pairs")
# Save to file
with open("tool_pairs_large.jsonl", "w") as f:
for pair in pairs:
f.write(json.dumps(pair) + "\n")
print(f"š¾ Saved to tool_pairs_large.jsonl")
print(f"š This should significantly improve training quality!")
# Show sample
print("\nš Sample pair:")
sample = pairs[0]
print(f"Schema: {json.loads(sample['prompt'].split('')[1].split('')[0])['name']}")
print(f"Question: {sample['prompt'].split('<|im_start|>user')[1].split('<|im_end|>')[0].strip()}")
print(f"Response: {sample['chosen']}")
if __name__ == "__main__":
main()