import gradio as gr from fastai.vision.all import * import skimage learn = load_learner('dog_breed.pkl') labels = learn.dls.vocab def predict(img): img = PILImage.create(img) pred,pred_idx,probs = learn.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} title = "Doge Breed Classifier" description = "A dog breed classifier trained on duckduckgo images with fastai." interpretation='default' enable_queue=True gr.Interface( fn=predict, inputs=gr.inputs.Image(shape=(512, 512)), outputs=gr.outputs.Label(num_top_classes=3), title=title, description=description, interpretation=interpretation, enable_queue=enable_queue ).launch()