Spaces:
Sleeping
Sleeping
File size: 26,943 Bytes
62f0df0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 |
"""
PenseAI - Chat Simples com Roteamento e Memoria
Login + Chat + Roteamento + Fluxo Complexo + Memoria Funcional
"""
import gradio as gr
import os
import json
import uuid
from datetime import datetime
from typing import Dict, Any, Optional, List, Tuple
# Importacoes da Groq e tiktoken
try:
from groq import Groq
import tiktoken
DEPENDENCIES_OK = True
except ImportError as e:
print(f"Erro ao importar dependencias: {e}")
DEPENDENCIES_OK = False
# Configuracao da API
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
# Sistema de usuarios
USERS = {
"Alexsandra": os.getenv("password1", ""),
"Ana Julia": os.getenv("password2", ""),
"Elisa": os.getenv("password3", ""),
"Jose Vitor": os.getenv("password4", ""),
"Sabrina": os.getenv("password5", "")
}
# Configuracao de modelos
MODEL_MAPPING = {
"chat_geral": "llama-3.3-70b-versatile",
"pesquisa_simples": "compound-beta-mini",
"pesquisa_complexa": "compound-beta",
"decompositor_tarefas": "deepseek-r1-distill-llama-70b",
"ultimo_recurso": "moonshotai/kimi-k2-instruct",
"roteador": "llama-3.3-70b-versatile",
"sumarizador": "llama-3.1-8b-instant"
}
FALLBACK_MODEL = "llama-3.1-8b-instant"
class MemoryManager:
"""Gerenciador de memoria com tiktoken - CORRIGIDO."""
def __init__(self, groq_client):
self.groq_client = groq_client
self.max_history = 20 # 20 primeiras perguntas e respostas
self.max_tokens = 3000 # Limite de tokens para contexto
try:
self.encoding = tiktoken.get_encoding("cl100k_base")
except:
self.encoding = None
def count_tokens(self, text: str) -> int:
"""Conta tokens usando tiktoken."""
if self.encoding:
try:
return len(self.encoding.encode(text))
except:
pass
# Fallback: estimativa simples
return int(len(text.split()) * 1.3)
def format_history_for_context(self, history: List[List[str]]) -> str:
"""Formata historico para contexto."""
if not history:
return ""
context_parts = ["HISTORICO DA CONVERSA:"]
for i, (user_msg, assistant_msg) in enumerate(history, 1):
context_parts.append(f"[{i}] Usuario: {user_msg}")
context_parts.append(f"[{i}] Assistente: {assistant_msg}")
return "\n".join(context_parts)
def summarize_old_messages(self, old_history: List[List[str]]) -> str:
"""Resume mensagens antigas usando instant."""
if not old_history:
return ""
# Formata historico para resumo
history_text = ""
for user_msg, assistant_msg in old_history:
history_text += f"Usuario: {user_msg}\nAssistente: {assistant_msg}\n\n"
summary_prompt = f"""Resume o seguinte historico de conversa de forma concisa, mantendo informacoes importantes sobre o usuario e contexto relevante:
{history_text}
Crie um resumo que preserve:
- Informacoes pessoais do usuario (nome, preferencias, etc.)
- Topicos principais discutidos
- Contexto importante para conversas futuras
Resumo:"""
try:
response, success = self.groq_client.call_llm(
model=MODEL_MAPPING["sumarizador"],
system_prompt="Voce e um especialista em resumir conversas mantendo informacoes importantes.",
user_prompt=summary_prompt,
temperature=0.3
)
if success:
return f"RESUMO DE CONVERSAS ANTERIORES:\n{response}\n\n"
else:
return ""
except:
return ""
def manage_memory(self, history: List[List[str]]) -> Tuple[List[List[str]], str]:
"""Gerencia memoria mantendo 20 mensagens e resumindo antigas - CORRIGIDO."""
if len(history) <= self.max_history:
# Se dentro do limite, retorna historico completo
context = self.format_history_for_context(history)
return history, context
# Separa mensagens antigas das recentes
old_messages = history[:-self.max_history]
recent_messages = history[-self.max_history:]
# Resume mensagens antigas
summary = self.summarize_old_messages(old_messages)
# Formata contexto com resumo + mensagens recentes
recent_context = self.format_history_for_context(recent_messages)
full_context = summary + recent_context
# Verifica se contexto nao esta muito longo
if self.count_tokens(full_context) > self.max_tokens:
# Se ainda muito longo, usa apenas mensagens recentes
context = recent_context
else:
context = full_context
return recent_messages, context
class GroqClient:
"""Cliente Groq simplificado."""
def __init__(self, api_key: str):
if not api_key:
raise ValueError("GROQ_API_KEY nao configurada")
self.client = Groq(api_key=api_key)
def clean_compound_response(self, response: str) -> str:
"""Remove metadados dos modelos compound."""
if not response:
return ""
import re
# Remove secoes de thinking
response = re.sub(r'<thinking>.*?</thinking>', '', response, flags=re.DOTALL)
response = re.sub(r'Thinking:.*?(?=\n\n|\n[A-Z]|$)', '', response, flags=re.DOTALL)
# Remove informacoes de ferramentas
response = re.sub(r'Tool used:.*?(?=\n\n|\n[A-Z]|$)', '', response, flags=re.DOTALL)
response = re.sub(r'Using tool:.*?(?=\n\n|\n[A-Z]|$)', '', response, flags=re.DOTALL)
return response.strip()
def call_llm(self, model: str, system_prompt: str, user_prompt: str,
temperature: float = 0.7) -> Tuple[str, bool]:
"""Chama LLM com fallback."""
try:
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt}
]
response = self.client.chat.completions.create(
model=model,
messages=messages,
temperature=temperature,
max_tokens=4000
)
content = response.choices[0].message.content
# Limpa resposta de modelos compound
if "compound" in model:
content = self.clean_compound_response(content)
return content, True
except Exception as e:
# Fallback
if model != FALLBACK_MODEL:
try:
response = self.client.chat.completions.create(
model=FALLBACK_MODEL,
messages=messages,
temperature=temperature,
max_tokens=4000
)
content = response.choices[0].message.content
return f"{content}\n\n*Via fallback: {FALLBACK_MODEL}*", True
except:
pass
return f"Erro na API: {str(e)}", False
class Router:
"""Roteador inteligente."""
def __init__(self, groq_client: GroqClient):
self.groq_client = groq_client
def route_query(self, query: str) -> Tuple[str, bool]:
"""Roteia query para IA apropriada."""
router_prompt = """Voce e um roteador inteligente de IA. Analise a pergunta do usuario e classifique em uma das categorias:
CATEGORIAS DISPONIVEIS:
- chat_geral: Conversas normais, perguntas gerais, explicacoes simples
- pesquisa_simples: Perguntas que precisam de informacoes atuais simples
- pesquisa_complexa: Pesquisas que precisam de multiplas fontes ou analise profunda
- complexo: Perguntas que precisam de raciocinio complexo ou decomposicao em subtarefas
ANALISE DE INTENCOES:
- Analise a INTENCAO REAL por tras da pergunta
- Considere o CONTEXTO COMPLETO da solicitacao
- Interprete alem das palavras literais
Responda APENAS com JSON:
{"ia": "categoria", "confianca": 0.95}
Se confianca < 0.80, use "complexo"."""
response, success = self.groq_client.call_llm(
model=MODEL_MAPPING["roteador"],
system_prompt=router_prompt,
user_prompt=f"Pergunta: {query}",
temperature=0.3
)
if not success:
return "chat_geral", False
try:
result = json.loads(response)
category = result.get("ia", "chat_geral")
confidence = result.get("confianca", 0.5)
# Se confianca baixa, usa complexo
if confidence < 0.80:
category = "complexo"
return category, True
except:
return "chat_geral", False
def create_complex_plan(self, query: str) -> Tuple[Dict[str, Any], bool]:
"""Cria plano para query complexa."""
complex_prompt = """Voce e um planejador de IA especializado em decompor tarefas complexas.
Analise a tarefa e decomponha em subtarefas simples. Responda APENAS com JSON:
{
"objetivo_final": "descricao do objetivo",
"subgoals": [
{
"subgoal": "meta intermediaria",
"subtasks": [
{
"subtask": "tarefa especifica",
"ai": "chat_geral|pesquisa_simples|pesquisa_complexa",
"prompt": "prompt especifico para a IA"
}
]
}
],
"complexidade_extrema": false
}
Se extremamente complexo, use "complexidade_extrema": true"""
response, success = self.groq_client.call_llm(
model=MODEL_MAPPING["decompositor_tarefas"],
system_prompt=complex_prompt,
user_prompt=f"Tarefa complexa: {query}",
temperature=0.4
)
if not success:
return {}, False
try:
plan = json.loads(response)
return plan, True
except:
return {}, False
class PenseAICore:
"""Sistema principal com memoria - CORRIGIDO."""
def __init__(self):
if not GROQ_API_KEY:
raise ValueError("GROQ_API_KEY nao configurada")
self.groq_client = GroqClient(GROQ_API_KEY)
self.router = Router(self.groq_client)
self.memory_manager = MemoryManager(self.groq_client)
def process_chat(self, message: str, history: List[List[str]]) -> List[List[str]]:
"""Processa mensagem do chat com memoria - CORRIGIDO."""
try:
# Gerencia memoria ANTES de processar
managed_history, context = self.memory_manager.manage_memory(history)
# Roteamento inteligente
category, route_success = self.router.route_query(message)
if route_success and category != "complexo":
# Fluxo simples com contexto
model = MODEL_MAPPING.get(category, MODEL_MAPPING["chat_geral"])
# Monta prompt com contexto se disponivel
if context:
system_prompt = f"""Voce e um assistente inteligente. Responda de forma util e precisa.
{context}
INSTRUCOES:
- Use o historico acima para manter contexto da conversa
- Lembre-se de informacoes anteriores sobre o usuario
- Responda de forma clara e objetiva
- Seja informativo e util
- Mantenha consistencia com conversas anteriores"""
else:
system_prompt = """Voce e um assistente inteligente. Responda de forma util e precisa.
INSTRUCOES:
- Analise a INTENCAO REAL por tras da pergunta
- Responda de forma clara e objetiva
- Seja informativo e util"""
response, success = self.groq_client.call_llm(
model=model,
system_prompt=system_prompt,
user_prompt=message,
temperature=0.7
)
if not success:
response = "Desculpe, ocorreu um erro ao processar sua solicitacao."
else:
# Fluxo complexo com contexto
response = self.handle_complex_flow(message, context)
# Adiciona a historia ORIGINAL (nao a gerenciada)
history.append([message, response])
return history
except Exception as e:
error_msg = f"Erro no sistema: {str(e)}"
history.append([message, error_msg])
return history
def handle_complex_flow(self, query: str, context: str = "") -> str:
"""Processa fluxo complexo com contexto."""
plan, plan_success = self.router.create_complex_plan(query)
if not plan_success:
# Fallback para ultimo recurso com contexto
if context:
system_prompt = f"""Voce e um assistente avancado. Responda de forma completa e inteligente.
{context}
Use o contexto acima se relevante para sua resposta."""
else:
system_prompt = "Voce e um assistente avancado. Responda de forma completa e inteligente."
response, success = self.groq_client.call_llm(
model=MODEL_MAPPING["ultimo_recurso"],
system_prompt=system_prompt,
user_prompt=query,
temperature=0.8
)
return response if success else "Nao foi possivel processar a solicitacao complexa."
if plan.get("complexidade_extrema"):
# Usa ultimo recurso com contexto
if context:
system_prompt = f"""Voce e um assistente avancado para casos extremamente complexos.
{context}
Use o contexto acima se relevante para sua resposta."""
else:
system_prompt = "Voce e um assistente avancado para casos extremamente complexos."
response, success = self.groq_client.call_llm(
model=MODEL_MAPPING["ultimo_recurso"],
system_prompt=system_prompt,
user_prompt=query,
temperature=0.8
)
return response if success else "Nao foi possivel processar a solicitacao extremamente complexa."
# Executa plano
results = []
for subgoal in plan.get("subgoals", []):
subgoal_results = []
for subtask in subgoal.get("subtasks", []):
ai_type = subtask.get("ai", "chat_geral")
model = MODEL_MAPPING.get(ai_type, MODEL_MAPPING["chat_geral"])
prompt = subtask.get("prompt", subtask.get("subtask", ""))
# Adiciona contexto se relevante
if context:
enhanced_prompt = f"{context}\n\nTarefa: {prompt}"
else:
enhanced_prompt = prompt
result, success = self.groq_client.call_llm(
model=model,
system_prompt="Voce e um assistente especializado. Responda de forma precisa e util.",
user_prompt=enhanced_prompt,
temperature=0.7
)
if success:
subgoal_results.append(f"- {subtask.get('subtask', 'Tarefa')}: {result}")
else:
subgoal_results.append(f"- {subtask.get('subtask', 'Tarefa')}: [Erro na execucao]")
if subgoal_results:
results.append(f"**{subgoal.get('subgoal', 'Meta')}:**\n" + "\n".join(subgoal_results))
# Sintese final
if results:
synthesis_prompt = f"""Sintetize os seguintes resultados em uma resposta coesa para o usuario:
PERGUNTA ORIGINAL: {query}
RESULTADOS:
{chr(10).join(results)}
Crie uma resposta final clara, bem estruturada e util."""
if context:
synthesis_prompt = f"{context}\n\n{synthesis_prompt}"
final_response, success = self.groq_client.call_llm(
model=MODEL_MAPPING["chat_geral"],
system_prompt="Voce e um sintetizador de informacoes. Crie respostas claras e bem estruturadas.",
user_prompt=synthesis_prompt,
temperature=0.6
)
return final_response if success else "\n\n".join(results)
return "Nao foi possivel executar o plano complexo."
# Funcao de autenticacao
def authenticate(username: str, password: str) -> Tuple[bool, str]:
"""Autentica usuario."""
if username in USERS and USERS[username] == password:
return True, f"Login realizado com sucesso! Bem-vindo(a), {username}!"
else:
return False, "Credenciais invalidas. Tente novamente."
# Interface Gradio LIMPA E FOCADA
def create_interface():
"""Cria interface limpa e focada."""
if not DEPENDENCIES_OK:
return gr.Interface(
fn=lambda: "Erro: Dependencias nao instaladas (groq, tiktoken)",
inputs=[],
outputs="text",
title="Erro de Configuracao"
)
if not GROQ_API_KEY:
return gr.Interface(
fn=lambda: "ERRO: GROQ_API_KEY nao configurada!",
inputs=[],
outputs="text",
title="Erro de Configuracao"
)
# Sistema principal
system = PenseAICore()
# CSS personalizado para layout limpo
custom_css = """
.main-container {
max-width: 1000px;
margin: 0 auto;
padding: 20px;
}
.login-container {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
border-radius: 15px;
padding: 30px;
margin: 20px 0;
box-shadow: 0 10px 30px rgba(0,0,0,0.2);
}
.chat-container {
background: linear-gradient(135deg, #f093fb 0%, #f5576c 100%);
border-radius: 15px;
padding: 20px;
margin: 20px 0;
box-shadow: 0 8px 25px rgba(0,0,0,0.15);
}
"""
# Interface limpa
with gr.Blocks(
title="PenseAI - Chat Inteligente",
theme=gr.themes.Soft(),
css=custom_css
) as demo:
# Header principal
gr.HTML("""
<div style="text-align: center; padding: 20px; background: linear-gradient(90deg, #4facfe 0%, #00f2fe 100%); border-radius: 15px; margin-bottom: 20px;">
<h1 style="color: white; margin: 0; font-size: 2.5em; text-shadow: 2px 2px 4px rgba(0,0,0,0.3);">
PenseAI - Chat Inteligente
</h1>
<p style="color: rgba(255,255,255,0.9); margin: 10px 0 0 0; font-size: 1.2em;">
Roteamento Automatico + Fluxo Complexo + Memoria Contextual
</p>
</div>
""")
# Estados
authenticated = gr.State(False)
current_user = gr.State("")
# Secao de Login
with gr.Group(elem_classes=["login-container"]) as login_section:
gr.HTML("""
<div style="text-align: center; margin-bottom: 20px;">
<h2 style="color: white; margin: 0;">Acesso ao Sistema</h2>
<p style="color: rgba(255,255,255,0.8); margin: 5px 0 0 0;">Faca login para acessar o chat</p>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
pass
with gr.Column(scale=3):
username_input = gr.Dropdown(
choices=list(USERS.keys()),
label="Usuario",
value=None
)
password_input = gr.Textbox(
label="Senha",
type="password",
max_lines=1
)
login_button = gr.Button("Entrar", variant="primary", size="lg")
login_status = gr.HTML("")
with gr.Column(scale=1):
pass
# Interface principal
with gr.Group(visible=False, elem_classes=["chat-container"]) as main_section:
# Header do chat
with gr.Row():
with gr.Column(scale=3):
gr.HTML("""
<div style="color: white;">
<h2 style="margin: 0;">Chat com Roteamento e Memoria</h2>
<p style="margin: 5px 0 0 0; opacity: 0.9;">Sistema inteligente que lembra do contexto</p>
</div>
""")
with gr.Column(scale=1):
logout_button = gr.Button("Sair", variant="secondary", size="sm")
# Area do chat
chatbot = gr.Chatbot(
height=500,
show_label=False,
container=True,
bubble_full_width=False
)
# Controles de entrada
with gr.Row():
text_input = gr.Textbox(
label="",
placeholder="Digite sua mensagem... (o sistema lembra do contexto)",
scale=5,
max_lines=3,
container=False
)
send_button = gr.Button("Enviar", variant="primary", scale=1, size="lg")
# Controles
with gr.Row():
clear_button = gr.Button("Limpar Chat", variant="secondary")
# Informacoes do sistema
gr.HTML("""
<div style="color: white; text-align: center; background: rgba(255,255,255,0.1); border-radius: 10px; padding: 15px; margin-top: 15px;">
<h3 style="margin: 0 0 10px 0;">Sistema de Roteamento Inteligente:</h3>
<div style="display: flex; justify-content: space-around; flex-wrap: wrap;">
<div style="margin: 5px; padding: 10px; background: rgba(255,255,255,0.1); border-radius: 8px; min-width: 180px;">
<strong>Chat Geral</strong><br>
<small>Conversas e perguntas simples</small>
</div>
<div style="margin: 5px; padding: 10px; background: rgba(255,255,255,0.1); border-radius: 8px; min-width: 180px;">
<strong>Pesquisa Simples</strong><br>
<small>Informacoes atuais basicas</small>
</div>
<div style="margin: 5px; padding: 10px; background: rgba(255,255,255,0.1); border-radius: 8px; min-width: 180px;">
<strong>Pesquisa Complexa</strong><br>
<small>Analises profundas</small>
</div>
<div style="margin: 5px; padding: 10px; background: rgba(255,255,255,0.1); border-radius: 8px; min-width: 180px;">
<strong>Fluxo Complexo</strong><br>
<small>Decomposicao de tarefas</small>
</div>
</div>
<p style="margin: 15px 0 0 0; opacity: 0.8;">
<strong>Memoria:</strong> Lembra das ultimas 20 conversas e resume automaticamente conversas antigas
</p>
</div>
""")
# Funcoes de evento
def handle_login(username, password):
success, message = authenticate(username, password)
if success:
status_html = f"""
<div style="color: #4CAF50; text-align: center; padding: 15px; background: rgba(76, 175, 80, 0.1); border-radius: 10px; margin-top: 15px;">
<strong>{message}</strong>
</div>
"""
return (
gr.update(visible=False),
gr.update(visible=True),
status_html,
True,
username
)
else:
status_html = f"""
<div style="color: #f44336; text-align: center; padding: 15px; background: rgba(244, 67, 54, 0.1); border-radius: 10px; margin-top: 15px;">
<strong>{message}</strong>
</div>
"""
return (
gr.update(visible=True),
gr.update(visible=False),
status_html,
False,
""
)
def handle_logout():
return (
gr.update(visible=True),
gr.update(visible=False),
"",
False,
"",
[]
)
def handle_chat(text, history, auth_state):
if not auth_state or not text.strip():
return history, ""
new_history = system.process_chat(text.strip(), history)
return new_history, ""
# Conectar eventos
login_button.click(
handle_login,
inputs=[username_input, password_input],
outputs=[login_section, main_section, login_status, authenticated, current_user]
)
logout_button.click(
handle_logout,
outputs=[login_section, main_section, login_status, authenticated, current_user, chatbot]
)
send_button.click(
handle_chat,
inputs=[text_input, chatbot, authenticated],
outputs=[chatbot, text_input]
)
text_input.submit(
handle_chat,
inputs=[text_input, chatbot, authenticated],
outputs=[chatbot, text_input]
)
clear_button.click(
lambda: [],
outputs=[chatbot]
)
return demo
# Execucao
if __name__ == "__main__":
print("===== PenseAI Chat Inteligente =====")
print("Data:", datetime.now().strftime("%Y-%m-%d %H:%M:%S"))
if not GROQ_API_KEY:
print("ERRO: GROQ_API_KEY nao configurada!")
exit(1)
if not any(USERS.values()):
print("ERRO: Nenhuma senha configurada!")
exit(1)
try:
demo = create_interface()
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
show_error=True
)
except Exception as e:
print(f"Erro ao iniciar: {e}")
exit(1) |