Spaces:
Configuration error
Configuration error
Upload _Generation.py
Browse files- _Generation.py +662 -0
_Generation.py
ADDED
|
@@ -0,0 +1,662 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import guitarpro
|
| 2 |
+
from guitarpro import *
|
| 3 |
+
from matplotlib import pyplot as plt
|
| 4 |
+
import mgzip
|
| 5 |
+
import numpy as np
|
| 6 |
+
import os
|
| 7 |
+
from os.path import join
|
| 8 |
+
import pickle
|
| 9 |
+
from tqdm import tqdm
|
| 10 |
+
|
| 11 |
+
import tensorflow as tf
|
| 12 |
+
from tensorflow import keras
|
| 13 |
+
from keras.callbacks import ModelCheckpoint
|
| 14 |
+
from keras.models import Sequential
|
| 15 |
+
from keras.layers import Activation, Dense, LSTM, Dropout, Flatten
|
| 16 |
+
|
| 17 |
+
from _Decompressor import SongWriter
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
# Define some constants:
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
# PITCH[i] = the pitch associated with midi note number i.
|
| 25 |
+
# For example, PITCH[69] = 'A4'
|
| 26 |
+
PITCH = {val : str(GuitarString(number=0, value=val)) for val in range(128)}
|
| 27 |
+
# MIDI[string] = the midi number associated with the note described by string.
|
| 28 |
+
# For example, MIDI['A4'] = 69.
|
| 29 |
+
MIDI = {str(GuitarString(number=0, value=val)) : val for val in range(128)}
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
# Generation helper methods:
|
| 37 |
+
def thirty_seconds_to_duration(count):
|
| 38 |
+
if count % 3 == 0:
|
| 39 |
+
# If the note is dotted, do 32 / (i * 2/3), and return isDotted = True.
|
| 40 |
+
return (48//count, True)
|
| 41 |
+
else:
|
| 42 |
+
# If the note is not dotted, to 32 / i, and return isDotted = False.
|
| 43 |
+
return (32//count, False)
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
def quantize_thirty_seconds(value):
|
| 47 |
+
|
| 48 |
+
# 32nd-note values of each fundamental type of note (not including 64th-notes, of course).
|
| 49 |
+
vals = np.array([32, # whole
|
| 50 |
+
24, # dotted half
|
| 51 |
+
16, # half
|
| 52 |
+
12, # dotted quarter
|
| 53 |
+
8, # quarter
|
| 54 |
+
6, # dotted eigth
|
| 55 |
+
4, # eigth
|
| 56 |
+
3, # dotted sixteenth
|
| 57 |
+
2, # sixteenth
|
| 58 |
+
1]) # thirty-second
|
| 59 |
+
|
| 60 |
+
list_out = []
|
| 61 |
+
|
| 62 |
+
for v in vals:
|
| 63 |
+
if v <= value:
|
| 64 |
+
list_out.append(thirty_seconds_to_duration(v))
|
| 65 |
+
value -= v
|
| 66 |
+
|
| 67 |
+
return np.array(list_out)
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
def adjust_to_4_4(prediction_output):
|
| 73 |
+
'''
|
| 74 |
+
Adjust prediction output to be in 4/4 time.
|
| 75 |
+
Then, separate the beats into measures.
|
| 76 |
+
'''
|
| 77 |
+
|
| 78 |
+
# This will be the prediction output
|
| 79 |
+
new_prediction_output = []
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
time = 0
|
| 83 |
+
for beat in prediction_output:
|
| 84 |
+
|
| 85 |
+
# Calculate the fraction of a measure encompassed by the current beat / chord.
|
| 86 |
+
beat_time = (1 / beat[1]) * (1 + 0.5 * beat[2])
|
| 87 |
+
|
| 88 |
+
# Calculate the fraction of a measure taken up by all notes in the measure.
|
| 89 |
+
# Calculate any residual time to see if this measure (in 4/4 time) is longer than 1 measure.
|
| 90 |
+
measure_time = time + beat_time
|
| 91 |
+
leftover_time = (measure_time) % 1
|
| 92 |
+
|
| 93 |
+
# If the measure count (i.e., the measure integer) has changed and there is significant left-over beat time:
|
| 94 |
+
if (int(measure_time) > int(time)) and (leftover_time > 1/128):
|
| 95 |
+
|
| 96 |
+
# Calculate the initial 32nd notes encompassed by this beat in the current measure.
|
| 97 |
+
this_measure_thirty_seconds = int(32 * (1 - time % 1))
|
| 98 |
+
# Calculate the remaining 32nd notes encompassed by this beat in the next measure.
|
| 99 |
+
next_measure_thirty_seconds = int(32 * leftover_time)
|
| 100 |
+
|
| 101 |
+
# Get the Duration object parameters for this measure and the next measure.
|
| 102 |
+
this_measure_durations = quantize_thirty_seconds(this_measure_thirty_seconds)
|
| 103 |
+
next_measure_durations = quantize_thirty_seconds(next_measure_thirty_seconds)
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
#print(f'{{ {32 / beat[1]}')
|
| 107 |
+
for duration_idx, duration in enumerate(this_measure_durations):
|
| 108 |
+
time += (1 / duration[0]) * (1 + 0.5 * duration[1])
|
| 109 |
+
|
| 110 |
+
#print(time, '\t', time * 32)
|
| 111 |
+
|
| 112 |
+
chord = beat[0] if duration_idx == 0 else 'tied'
|
| 113 |
+
|
| 114 |
+
new_prediction_output.append((chord, duration[0], duration[1], beat[3]))
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
for duration in next_measure_durations:
|
| 118 |
+
time += (1 / duration[0]) * (1 + 0.5 * duration[1])
|
| 119 |
+
|
| 120 |
+
#print(time, '\t', time * 32)
|
| 121 |
+
|
| 122 |
+
new_prediction_output.append(('tied', duration[0], duration[1], beat[3]))
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
continue
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
time += beat_time
|
| 129 |
+
new_prediction_output.append((beat[0], beat[1], beat[2], beat[3]))
|
| 130 |
+
|
| 131 |
+
#print(time, '\t', time * 32)
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
'''
|
| 135 |
+
# Code for debugging
|
| 136 |
+
|
| 137 |
+
time = 0
|
| 138 |
+
time2 = 0
|
| 139 |
+
idx = 0
|
| 140 |
+
|
| 141 |
+
for idx2, beat2 in enumerate(new_prediction_output[:100]):
|
| 142 |
+
beat = prediction_output[idx]
|
| 143 |
+
|
| 144 |
+
if time == time2:
|
| 145 |
+
print(beat[0], '\t', time, '\t\t', beat2[0], '\t', time2)
|
| 146 |
+
|
| 147 |
+
idx += 1
|
| 148 |
+
|
| 149 |
+
time += (1 / beat[1]) * (1 + 0.5 * beat[2])
|
| 150 |
+
|
| 151 |
+
else:
|
| 152 |
+
print('\t\t\t\t', beat2[0], '\t', time2)
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
time2 += (1 / beat2[1]) * (1 + 0.5 * beat2[2])
|
| 157 |
+
''';
|
| 158 |
+
|
| 159 |
+
# Use the previously calculated cumulative time as the number of measures in the new 4/4 song.
|
| 160 |
+
num_measures = int(np.ceil(time))
|
| 161 |
+
|
| 162 |
+
song = np.empty(num_measures, dtype=object)
|
| 163 |
+
|
| 164 |
+
time = 0
|
| 165 |
+
m_idx = 0
|
| 166 |
+
|
| 167 |
+
timestamps = []
|
| 168 |
+
|
| 169 |
+
for beat in new_prediction_output:
|
| 170 |
+
#print(time)
|
| 171 |
+
timestamps.append(time)
|
| 172 |
+
|
| 173 |
+
m_idx = int(time)
|
| 174 |
+
|
| 175 |
+
if song[m_idx] is None:
|
| 176 |
+
|
| 177 |
+
song[m_idx] = [beat]
|
| 178 |
+
else:
|
| 179 |
+
song[m_idx].append(beat)
|
| 180 |
+
|
| 181 |
+
|
| 182 |
+
time += (1 / beat[1]) * (1 + 0.5 * beat[2])
|
| 183 |
+
|
| 184 |
+
|
| 185 |
+
print(f'4/4 adjusted correctly: {set(range(num_measures)).issubset(set(timestamps))}')
|
| 186 |
+
|
| 187 |
+
return song
|
| 188 |
+
|
| 189 |
+
|
| 190 |
+
|
| 191 |
+
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
|
| 195 |
+
class Generator:
|
| 196 |
+
def __init__(self, num_tracks_to_generate=5, as_fingerings=True, sequence_length=100):
|
| 197 |
+
with mgzip.open(join('data', 'notes_data.pickle.gz'), 'rb') as filepath:
|
| 198 |
+
self.notes = pickle.load(filepath)
|
| 199 |
+
self.note_to_int = pickle.load(filepath)
|
| 200 |
+
self.int_to_note = pickle.load(filepath)
|
| 201 |
+
self.n_vocab = pickle.load(filepath)
|
| 202 |
+
self.NUM_TRACKS_TO_GENERATE = num_tracks_to_generate
|
| 203 |
+
self.as_fingerings = as_fingerings
|
| 204 |
+
self.sequence_length = sequence_length
|
| 205 |
+
|
| 206 |
+
with mgzip.open(join('data', 'track_data.pickle.gz'), 'rb') as filepath:
|
| 207 |
+
self.track_data = pickle.load(filepath)
|
| 208 |
+
|
| 209 |
+
self.model = keras.models.load_model('minigpt')
|
| 210 |
+
|
| 211 |
+
self.ints = np.array([self.note_to_int[x] for x in self.notes])
|
| 212 |
+
|
| 213 |
+
|
| 214 |
+
|
| 215 |
+
def generate_track(self, track_idx=None):
|
| 216 |
+
|
| 217 |
+
if track_idx is None:
|
| 218 |
+
# Choose a random track
|
| 219 |
+
track_idx = np.random.choice(len(self.track_data))
|
| 220 |
+
|
| 221 |
+
# Get the note indices corresponding to the beginning and ending of the track
|
| 222 |
+
song_note_idx_first = self.track_data.loc[track_idx]['noteStartIdx']
|
| 223 |
+
song_note_idx_last = self.track_data.loc[track_idx+1]['noteStartIdx']
|
| 224 |
+
|
| 225 |
+
# Choose a random starting point within the track
|
| 226 |
+
start_idx = np.random.randint(low=song_note_idx_first,
|
| 227 |
+
high=song_note_idx_last)
|
| 228 |
+
|
| 229 |
+
# Choose a number of initial notes to select from the track, at most 100.
|
| 230 |
+
#num_initial_notes = np.random.choice(min(100, song_note_idx_last - start_idx))
|
| 231 |
+
num_initial_notes = np.random.choice(min(100, song_note_idx_last - start_idx))
|
| 232 |
+
|
| 233 |
+
# Select the initial notes (tokens)
|
| 234 |
+
start_tokens = [_ for _ in self.ints[start_idx:start_idx+num_initial_notes]]
|
| 235 |
+
|
| 236 |
+
|
| 237 |
+
max_tokens = 100
|
| 238 |
+
|
| 239 |
+
|
| 240 |
+
|
| 241 |
+
def sample_from(logits, top_k=10):
|
| 242 |
+
logits, indices = tf.math.top_k(logits, k=top_k, sorted=True)
|
| 243 |
+
indices = np.asarray(indices).astype("int32")
|
| 244 |
+
preds = keras.activations.softmax(tf.expand_dims(logits, 0))[0]
|
| 245 |
+
preds = np.asarray(preds).astype("float32")
|
| 246 |
+
return np.random.choice(indices, p=preds)
|
| 247 |
+
|
| 248 |
+
num_tokens_generated = 0
|
| 249 |
+
tokens_generated = []
|
| 250 |
+
|
| 251 |
+
while num_tokens_generated <= max_tokens:
|
| 252 |
+
pad_len = self.sequence_length - len(start_tokens)
|
| 253 |
+
sample_index = len(start_tokens) - 1
|
| 254 |
+
if pad_len < 0:
|
| 255 |
+
x = start_tokens[:self.sequence_length]
|
| 256 |
+
sample_index = self.sequence_length - 1
|
| 257 |
+
elif pad_len > 0:
|
| 258 |
+
x = start_tokens + [0] * pad_len
|
| 259 |
+
else:
|
| 260 |
+
x = start_tokens
|
| 261 |
+
x = np.array([x])
|
| 262 |
+
y, _ = self.model.predict(x)
|
| 263 |
+
sample_token = sample_from(y[0][sample_index])
|
| 264 |
+
tokens_generated.append(sample_token)
|
| 265 |
+
start_tokens.append(sample_token)
|
| 266 |
+
num_tokens_generated = len(tokens_generated)
|
| 267 |
+
|
| 268 |
+
generated_notes = [self.int_to_note[num] for num in np.concatenate((start_tokens, tokens_generated))]
|
| 269 |
+
|
| 270 |
+
return track_idx, generated_notes
|
| 271 |
+
|
| 272 |
+
|
| 273 |
+
|
| 274 |
+
def generate_track_batch(self, artist=None):
|
| 275 |
+
|
| 276 |
+
self.track_indices = np.zeros(self.NUM_TRACKS_TO_GENERATE)
|
| 277 |
+
self.tracks = np.zeros(self.NUM_TRACKS_TO_GENERATE, dtype=object)
|
| 278 |
+
|
| 279 |
+
|
| 280 |
+
for i in tqdm(range(self.NUM_TRACKS_TO_GENERATE)):
|
| 281 |
+
if artist is None:
|
| 282 |
+
idx, t = self.generate_track()
|
| 283 |
+
else:
|
| 284 |
+
idx, t = self.generate_track(track_idx=np.random.choice(list(self.track_data[self.track_data.artist==artist].index)))
|
| 285 |
+
self.track_indices[i] = idx
|
| 286 |
+
self.tracks[i] = t
|
| 287 |
+
|
| 288 |
+
|
| 289 |
+
|
| 290 |
+
def save_tracks(self, filepath='_generation.gp5'):
|
| 291 |
+
|
| 292 |
+
songWriter = SongWriter(initialTempo=self.track_data.loc[self.track_indices[0]]['tempo'])
|
| 293 |
+
|
| 294 |
+
for idx in range(len(self.tracks)):
|
| 295 |
+
new_track = adjust_to_4_4(self.tracks[idx])
|
| 296 |
+
|
| 297 |
+
# Get the tempo and tuning (lowest string note) of the song:
|
| 298 |
+
#print( track_data.loc[track_indices[idx]])
|
| 299 |
+
tempo = self.track_data.loc[self.track_indices[idx]]['tempo']
|
| 300 |
+
instrument = self.track_data.loc[self.track_indices[idx]]['instrument']
|
| 301 |
+
name = self.track_data.loc[self.track_indices[idx]]['song']
|
| 302 |
+
lowest_string = self.track_data.loc[self.track_indices[idx]]['tuning']
|
| 303 |
+
|
| 304 |
+
if not self.as_fingerings:
|
| 305 |
+
# Get all the unique pitch values from the new track
|
| 306 |
+
pitchnames = set.union(*[set([beat[0].split('_')[0] for beat in measure]) for measure in new_track])
|
| 307 |
+
pitchnames.discard('rest') # Ignore rests
|
| 308 |
+
pitchnames.discard('tied') # Ignore tied notes
|
| 309 |
+
pitchnames.discard('dead') # Ignore dead/ghost notes
|
| 310 |
+
lowest_string = min([MIDI[pitch] for pitch in pitchnames]) # Get the lowest MIDI value / pitch
|
| 311 |
+
lowest_string = min(lowest_string, MIDI['E2']) # Don't allow any tunings higher than standard.
|
| 312 |
+
|
| 313 |
+
|
| 314 |
+
# Standard tuning
|
| 315 |
+
tuning = {1: MIDI['E4'],
|
| 316 |
+
2: MIDI['B3'],
|
| 317 |
+
3: MIDI['G3'],
|
| 318 |
+
4: MIDI['D3'],
|
| 319 |
+
5: MIDI['A2'],
|
| 320 |
+
6: MIDI['E2']}
|
| 321 |
+
|
| 322 |
+
if lowest_string <= MIDI['B1']:
|
| 323 |
+
# 7-string guitar case
|
| 324 |
+
tuning[7] = MIDI['B1']
|
| 325 |
+
downtune = MIDI['B1'] - lowest_string
|
| 326 |
+
else:
|
| 327 |
+
# downtune the tuning by however much is necessary.
|
| 328 |
+
downtune = MIDI['E2'] - lowest_string
|
| 329 |
+
|
| 330 |
+
tuning = {k: v - downtune for k, v in tuning.items()} # Adjust to the new tuning
|
| 331 |
+
|
| 332 |
+
# Write the track to the song writer
|
| 333 |
+
songWriter.decompress_track(new_track, tuning, tempo=tempo, instrument=instrument, name=name, as_fingerings=self.as_fingerings)
|
| 334 |
+
|
| 335 |
+
|
| 336 |
+
|
| 337 |
+
songWriter.write(filepath)
|
| 338 |
+
print('Finished')
|
| 339 |
+
|
| 340 |
+
|
| 341 |
+
|
| 342 |
+
|
| 343 |
+
|
| 344 |
+
|
| 345 |
+
|
| 346 |
+
|
| 347 |
+
|
| 348 |
+
'''
|
| 349 |
+
|
| 350 |
+
|
| 351 |
+
def init_generator():
|
| 352 |
+
global NUM_TRACKS_TO_GENERATE, notes, note_to_int, int_to_note, n_vocab, track_data, model, ints
|
| 353 |
+
|
| 354 |
+
with mgzip.open('data\\notes_data.pickle.gz', 'rb') as filepath:
|
| 355 |
+
notes = pickle.load(filepath)
|
| 356 |
+
note_to_int = pickle.load(filepath)
|
| 357 |
+
int_to_note = pickle.load(filepath)
|
| 358 |
+
n_vocab = pickle.load(filepath)
|
| 359 |
+
|
| 360 |
+
with mgzip.open('data\\track_data.pickle.gz', 'rb') as filepath:
|
| 361 |
+
track_data = pickle.load(filepath)
|
| 362 |
+
|
| 363 |
+
#with mgzip.open('output\\generated_songs.pickle.gz', 'rb') as filepath:
|
| 364 |
+
# track_indices = pickle.load(filepath)
|
| 365 |
+
# tracks = pickle.load(filepath)
|
| 366 |
+
|
| 367 |
+
model = keras.models.load_model('minigpt')
|
| 368 |
+
|
| 369 |
+
ints = np.array([note_to_int[x] for x in notes])
|
| 370 |
+
|
| 371 |
+
|
| 372 |
+
|
| 373 |
+
|
| 374 |
+
def generate_track(track_idx=None):
|
| 375 |
+
global track_data, ints, int_to_note
|
| 376 |
+
|
| 377 |
+
if track_idx is None:
|
| 378 |
+
# Choose a random track
|
| 379 |
+
track_idx = np.random.choice(len(track_data))
|
| 380 |
+
|
| 381 |
+
# Get the note indices corresponding to the beginning and ending of the track
|
| 382 |
+
song_note_idx_first = track_data.loc[track_idx]['noteStartIdx']
|
| 383 |
+
song_note_idx_last = track_data.loc[track_idx+1]['noteStartIdx']
|
| 384 |
+
|
| 385 |
+
# Choose a random starting point within the track
|
| 386 |
+
start_idx = np.random.randint(low=song_note_idx_first,
|
| 387 |
+
high=song_note_idx_last)
|
| 388 |
+
|
| 389 |
+
# Choose a number of initial notes to select from the track, at most 100.
|
| 390 |
+
#num_initial_notes = np.random.choice(min(100, song_note_idx_last - start_idx))
|
| 391 |
+
num_initial_notes = np.random.choice(min(100, song_note_idx_last - start_idx))
|
| 392 |
+
|
| 393 |
+
# Select the initial notes (tokens)
|
| 394 |
+
start_tokens = [_ for _ in ints[start_idx:start_idx+num_initial_notes]]
|
| 395 |
+
|
| 396 |
+
|
| 397 |
+
max_tokens = 100
|
| 398 |
+
|
| 399 |
+
|
| 400 |
+
|
| 401 |
+
def sample_from(logits, top_k=10):
|
| 402 |
+
logits, indices = tf.math.top_k(logits, k=top_k, sorted=True)
|
| 403 |
+
indices = np.asarray(indices).astype("int32")
|
| 404 |
+
preds = keras.activations.softmax(tf.expand_dims(logits, 0))[0]
|
| 405 |
+
preds = np.asarray(preds).astype("float32")
|
| 406 |
+
return np.random.choice(indices, p=preds)
|
| 407 |
+
|
| 408 |
+
num_tokens_generated = 0
|
| 409 |
+
tokens_generated = []
|
| 410 |
+
|
| 411 |
+
while num_tokens_generated <= max_tokens:
|
| 412 |
+
pad_len = maxlen - len(start_tokens)
|
| 413 |
+
sample_index = len(start_tokens) - 1
|
| 414 |
+
if pad_len < 0:
|
| 415 |
+
x = start_tokens[:maxlen]
|
| 416 |
+
sample_index = maxlen - 1
|
| 417 |
+
elif pad_len > 0:
|
| 418 |
+
x = start_tokens + [0] * pad_len
|
| 419 |
+
else:
|
| 420 |
+
x = start_tokens
|
| 421 |
+
x = np.array([x])
|
| 422 |
+
y, _ = model.predict(x)
|
| 423 |
+
sample_token = sample_from(y[0][sample_index])
|
| 424 |
+
tokens_generated.append(sample_token)
|
| 425 |
+
start_tokens.append(sample_token)
|
| 426 |
+
num_tokens_generated = len(tokens_generated)
|
| 427 |
+
|
| 428 |
+
generated_notes = [int_to_note[num] for num in np.concatenate((start_tokens, tokens_generated))]
|
| 429 |
+
|
| 430 |
+
return track_idx, generated_notes
|
| 431 |
+
|
| 432 |
+
|
| 433 |
+
|
| 434 |
+
|
| 435 |
+
def generate_track_batch(artist=None):
|
| 436 |
+
global track_indices, tracks, NUM_TRACKS_TO_GENERATE, track_data
|
| 437 |
+
|
| 438 |
+
track_indices = np.zeros(NUM_TRACKS_TO_GENERATE)
|
| 439 |
+
tracks = np.zeros(NUM_TRACKS_TO_GENERATE, dtype=object)
|
| 440 |
+
|
| 441 |
+
|
| 442 |
+
for i in tqdm(range(NUM_TRACKS_TO_GENERATE)):
|
| 443 |
+
if artist is None:
|
| 444 |
+
idx, t = generate_track()
|
| 445 |
+
else:
|
| 446 |
+
idx, t = generate_track(track_idx=np.random.choice(list(track_data[track_data.artist==artist].index)))
|
| 447 |
+
track_indices[i] = idx
|
| 448 |
+
tracks[i] = t
|
| 449 |
+
|
| 450 |
+
|
| 451 |
+
|
| 452 |
+
|
| 453 |
+
|
| 454 |
+
# Generation helper methods:
|
| 455 |
+
def thirty_seconds_to_duration(count):
|
| 456 |
+
if count % 3 == 0:
|
| 457 |
+
# If the note is dotted, do 32 / (i * 2/3), and return isDotted = True.
|
| 458 |
+
return (48//count, True)
|
| 459 |
+
else:
|
| 460 |
+
# If the note is not dotted, to 32 / i, and return isDotted = False.
|
| 461 |
+
return (32//count, False)
|
| 462 |
+
|
| 463 |
+
|
| 464 |
+
def quantize_thirty_seconds(value):
|
| 465 |
+
|
| 466 |
+
# 32nd-note values of each fundamental type of note (not including 64th-notes, of course).
|
| 467 |
+
vals = np.array([32, # whole
|
| 468 |
+
24, # dotted half
|
| 469 |
+
16, # half
|
| 470 |
+
12, # dotted quarter
|
| 471 |
+
8, # quarter
|
| 472 |
+
6, # dotted eigth
|
| 473 |
+
4, # eigth
|
| 474 |
+
3, # dotted sixteenth
|
| 475 |
+
2, # sixteenth
|
| 476 |
+
1]) # thirty-second
|
| 477 |
+
|
| 478 |
+
list_out = []
|
| 479 |
+
|
| 480 |
+
for v in vals:
|
| 481 |
+
if v <= value:
|
| 482 |
+
list_out.append(thirty_seconds_to_duration(v))
|
| 483 |
+
value -= v
|
| 484 |
+
|
| 485 |
+
return np.array(list_out)
|
| 486 |
+
|
| 487 |
+
|
| 488 |
+
|
| 489 |
+
|
| 490 |
+
def adjust_to_4_4(prediction_output):
|
| 491 |
+
|
| 492 |
+
#Adjust prediction output to be in 4/4 time.
|
| 493 |
+
#Then, separate the beats into measures.
|
| 494 |
+
|
| 495 |
+
|
| 496 |
+
# This will be the prediction output
|
| 497 |
+
new_prediction_output = []
|
| 498 |
+
|
| 499 |
+
|
| 500 |
+
time = 0
|
| 501 |
+
for beat in prediction_output:
|
| 502 |
+
|
| 503 |
+
# Calculate the fraction of a measure encompassed by the current beat / chord.
|
| 504 |
+
beat_time = (1 / beat[1]) * (1 + 0.5 * beat[2])
|
| 505 |
+
|
| 506 |
+
# Calculate the fraction of a measure taken up by all notes in the measure.
|
| 507 |
+
# Calculate any residual time to see if this measure (in 4/4 time) is longer than 1 measure.
|
| 508 |
+
measure_time = time + beat_time
|
| 509 |
+
leftover_time = (measure_time) % 1
|
| 510 |
+
|
| 511 |
+
# If the measure count (i.e., the measure integer) has changed and there is significant left-over beat time:
|
| 512 |
+
if (int(measure_time) > int(time)) and (leftover_time > 1/128):
|
| 513 |
+
|
| 514 |
+
# Calculate the initial 32nd notes encompassed by this beat in the current measure.
|
| 515 |
+
this_measure_thirty_seconds = int(32 * (1 - time % 1))
|
| 516 |
+
# Calculate the remaining 32nd notes encompassed by this beat in the next measure.
|
| 517 |
+
next_measure_thirty_seconds = int(32 * leftover_time)
|
| 518 |
+
|
| 519 |
+
# Get the Duration object parameters for this measure and the next measure.
|
| 520 |
+
this_measure_durations = quantize_thirty_seconds(this_measure_thirty_seconds)
|
| 521 |
+
next_measure_durations = quantize_thirty_seconds(next_measure_thirty_seconds)
|
| 522 |
+
|
| 523 |
+
|
| 524 |
+
#print(f'{{ {32 / beat[1]}')
|
| 525 |
+
for duration_idx, duration in enumerate(this_measure_durations):
|
| 526 |
+
time += (1 / duration[0]) * (1 + 0.5 * duration[1])
|
| 527 |
+
|
| 528 |
+
#print(time, '\t', time * 32)
|
| 529 |
+
|
| 530 |
+
chord = beat[0] if duration_idx == 0 else 'tied'
|
| 531 |
+
|
| 532 |
+
new_prediction_output.append((chord, duration[0], duration[1]))
|
| 533 |
+
|
| 534 |
+
|
| 535 |
+
for duration in next_measure_durations:
|
| 536 |
+
time += (1 / duration[0]) * (1 + 0.5 * duration[1])
|
| 537 |
+
|
| 538 |
+
#print(time, '\t', time * 32)
|
| 539 |
+
|
| 540 |
+
new_prediction_output.append(('tied', duration[0], duration[1]))
|
| 541 |
+
|
| 542 |
+
|
| 543 |
+
continue
|
| 544 |
+
|
| 545 |
+
|
| 546 |
+
time += beat_time
|
| 547 |
+
new_prediction_output.append((beat[0], beat[1], beat[2]))
|
| 548 |
+
|
| 549 |
+
#print(time, '\t', time * 32)
|
| 550 |
+
|
| 551 |
+
|
| 552 |
+
|
| 553 |
+
# Code for debugging
|
| 554 |
+
|
| 555 |
+
#time = 0
|
| 556 |
+
#time2 = 0
|
| 557 |
+
#idx = 0
|
| 558 |
+
|
| 559 |
+
#for idx2, beat2 in enumerate(new_prediction_output[:100]):
|
| 560 |
+
# beat = prediction_output[idx]
|
| 561 |
+
|
| 562 |
+
# if time == time2:
|
| 563 |
+
# print(beat[0], '\t', time, '\t\t', beat2[0], '\t', time2)
|
| 564 |
+
|
| 565 |
+
# idx += 1
|
| 566 |
+
|
| 567 |
+
# time += (1 / beat[1]) * (1 + 0.5 * beat[2])
|
| 568 |
+
|
| 569 |
+
# else:
|
| 570 |
+
# print('\t\t\t\t', beat2[0], '\t', time2)
|
| 571 |
+
|
| 572 |
+
|
| 573 |
+
|
| 574 |
+
# time2 += (1 / beat2[1]) * (1 + 0.5 * beat2[2])
|
| 575 |
+
|
| 576 |
+
|
| 577 |
+
# Use the previously calculated cumulative time as the number of measures in the new 4/4 song.
|
| 578 |
+
num_measures = int(np.ceil(time))
|
| 579 |
+
|
| 580 |
+
song = np.empty(num_measures, dtype=object)
|
| 581 |
+
|
| 582 |
+
time = 0
|
| 583 |
+
m_idx = 0
|
| 584 |
+
|
| 585 |
+
timestamps = []
|
| 586 |
+
|
| 587 |
+
for beat in new_prediction_output:
|
| 588 |
+
#print(time)
|
| 589 |
+
timestamps.append(time)
|
| 590 |
+
|
| 591 |
+
m_idx = int(time)
|
| 592 |
+
|
| 593 |
+
if song[m_idx] is None:
|
| 594 |
+
|
| 595 |
+
song[m_idx] = [beat]
|
| 596 |
+
else:
|
| 597 |
+
song[m_idx].append(beat)
|
| 598 |
+
|
| 599 |
+
|
| 600 |
+
time += (1 / beat[1]) * (1 + 0.5 * beat[2])
|
| 601 |
+
|
| 602 |
+
|
| 603 |
+
print(f'4/4 adjusted correctly: {set(range(num_measures)).issubset(set(timestamps))}')
|
| 604 |
+
|
| 605 |
+
return song
|
| 606 |
+
|
| 607 |
+
|
| 608 |
+
|
| 609 |
+
|
| 610 |
+
|
| 611 |
+
|
| 612 |
+
def save_tracks(filepath='_generation.gp5'):
|
| 613 |
+
global track_data, track_indice, tracks
|
| 614 |
+
|
| 615 |
+
songWriter = SongWriter(initialTempo=track_data.loc[track_indices[0]]['tempo'])
|
| 616 |
+
|
| 617 |
+
for idx in range(len(tracks)):
|
| 618 |
+
new_track = adjust_to_4_4(tracks[idx])
|
| 619 |
+
|
| 620 |
+
# Get the tempo and tuning (lowest string note) of the song:
|
| 621 |
+
#print( track_data.loc[track_indices[idx]])
|
| 622 |
+
tempo = track_data.loc[track_indices[idx]]['tempo']
|
| 623 |
+
instrument = track_data.loc[track_indices[idx]]['instrument']
|
| 624 |
+
name = track_data.loc[track_indices[idx]]['song']
|
| 625 |
+
lowest_string = track_data.loc[track_indices[idx]]['tuning']
|
| 626 |
+
|
| 627 |
+
if not as_fingerings:
|
| 628 |
+
# Get all the unique pitch values from the new track
|
| 629 |
+
pitchnames = set.union(*[set([beat[0].split('_')[0] for beat in measure]) for measure in new_track])
|
| 630 |
+
pitchnames.discard('rest') # Ignore rests
|
| 631 |
+
pitchnames.discard('tied') # Ignore tied notes
|
| 632 |
+
pitchnames.discard('dead') # Ignore dead/ghost notes
|
| 633 |
+
lowest_string = min([MIDI[pitch] for pitch in pitchnames]) # Get the lowest MIDI value / pitch
|
| 634 |
+
lowest_string = min(lowest_string, MIDI['E2']) # Don't allow any tunings higher than standard.
|
| 635 |
+
|
| 636 |
+
|
| 637 |
+
# Standard tuning
|
| 638 |
+
tuning = {1: MIDI['E4'],
|
| 639 |
+
2: MIDI['B3'],
|
| 640 |
+
3: MIDI['G3'],
|
| 641 |
+
4: MIDI['D3'],
|
| 642 |
+
5: MIDI['A2'],
|
| 643 |
+
6: MIDI['E2']}
|
| 644 |
+
|
| 645 |
+
if lowest_string <= MIDI['B1']:
|
| 646 |
+
# 7-string guitar case
|
| 647 |
+
tuning[7] = MIDI['B1']
|
| 648 |
+
downtune = MIDI['B1'] - lowest_string
|
| 649 |
+
else:
|
| 650 |
+
# downtune the tuning by however much is necessary.
|
| 651 |
+
downtune = MIDI['E2'] - lowest_string
|
| 652 |
+
|
| 653 |
+
tuning = {k: v - downtune for k, v in tuning.items()} # Adjust to the new tuning
|
| 654 |
+
|
| 655 |
+
# Write the track to the song writer
|
| 656 |
+
songWriter.decompress_track(new_track, tuning, tempo=tempo, instrument=instrument, name=name, as_fingerings=as_fingerings)
|
| 657 |
+
|
| 658 |
+
|
| 659 |
+
|
| 660 |
+
songWriter.write(filepath)
|
| 661 |
+
print('Finished')
|
| 662 |
+
'''
|