Spaces:
Sleeping
Sleeping
File size: 9,475 Bytes
35e66cc 2201e62 35e66cc 0b9e85c 35e66cc 2201e62 35e66cc 2201e62 35e66cc 2201e62 35e66cc 2201e62 35e66cc 2201e62 35e66cc 2201e62 35e66cc 2201e62 6dff5db 35e66cc 2201e62 35e66cc 2201e62 35e66cc 2201e62 35e66cc 2201e62 35e66cc 2201e62 35e66cc 2201e62 35e66cc e69b450 35e66cc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
import asyncio
import torch
import librosa
import numpy as np
import soundfile as sf
from transformers import (
AutoProcessor, AutoModelForSpeechSeq2Seq,
AutoModelForCausalLM, AutoTokenizer
)
import logging
from typing import Optional, Dict, Any
import time
from pathlib import Path
from kokoro import KPipeline
import gradio as gr
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
system_prompt_0 = """You are a highly trained U.S. Tax Assistant AI, designed to help individuals and small businesses understand, plan, and file their taxes according to federal and state tax laws. You explain complex tax concepts in simple, accurate, and actionable terms, using IRS guidelines, up-to-date tax code knowledge, and best practices for compliance and savings. You act as an explainer, educator, and assistant—not a certified tax preparer or legal advisor."""
class AsyncAIConversation:
def __init__(self):
self.stt_processor = None
self.stt_model = None
self.llm_tokenizer = None
self.llm_model = None
self.tts_synthesizer = None
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
logger.info(f"Using device: {self.device}")
async def initialize_models(self):
logger.info("Initializing models...")
await self._init_stt_model()
await self._init_llm_model()
await self._init_tts_model()
logger.info("All models initialized successfully!")
async def _init_stt_model(self):
try:
stt_model_id = "unsloth/whisper-small"
self.stt_processor = AutoProcessor.from_pretrained(stt_model_id)
self.stt_model = AutoModelForSpeechSeq2Seq.from_pretrained(stt_model_id)
self.stt_model.to(self.device)
logger.info("STT model loaded successfully")
except Exception as e:
logger.error(f"Error loading STT model: {e}")
raise
async def _init_llm_model(self):
try:
model_name = "unsloth/Qwen3-0.6B"
self.llm_tokenizer = AutoTokenizer.from_pretrained(model_name)
self.llm_model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
logger.info("LLM model loaded successfully")
except Exception as e:
logger.error(f"Error loading LLM model: {e}")
raise
async def _init_tts_model(self):
try:
self.tts_synthesizer = KPipeline(lang_code='a')
logger.info("TTS model loaded successfully")
except Exception as e:
logger.error(f"Error loading TTS model: {e}")
raise
async def speech_to_text(self, audio_file_path: str) -> str:
try:
def load_audio():
return librosa.load(audio_file_path, sr=16000)
loop = asyncio.get_event_loop()
speech_array, sampling_rate = await loop.run_in_executor(None, load_audio)
input_features = self.stt_processor(
speech_array,
sampling_rate=sampling_rate,
return_tensors="pt"
).input_features.to(self.device)
with torch.no_grad():
predicted_ids = self.stt_model.generate(input_features)
transcription = self.stt_processor.batch_decode(predicted_ids, skip_special_tokens=True)
return transcription[0] if transcription else ""
except Exception as e:
logger.error(f"Error in speech_to_text: {e}")
return ""
async def process_with_llm(self, text: str, system_prompt: Optional[str] = None) -> Dict[str, str]:
try:
messages = [{"role": "user", "content": text}]
if system_prompt:
messages.insert(0, {"role": "system", "content": system_prompt})
formatted_text = self.llm_tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
enable_thinking=False
)
model_inputs = self.llm_tokenizer([formatted_text], return_tensors="pt").to(self.llm_model.device)
with torch.no_grad():
generated_ids = self.llm_model.generate(
**model_inputs,
max_new_tokens=512,
temperature=0.7,
do_sample=True,
pad_token_id=self.llm_tokenizer.eos_token_id
)
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
try:
index = len(output_ids) - output_ids[::-1].index(151668)
except ValueError:
index = 0
thinking_content = self.llm_tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n")
content = self.llm_tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n")
return {
"thinking": thinking_content,
"response": content
}
except Exception as e:
logger.error(f"Error in process_with_llm: {e}")
return {"thinking": "", "response": "Sorry, I encountered an error processing your request."}
async def text_to_speech(self, text: str, output_path: str = "response.wav") -> str:
try:
def generate_speech():
generator = self.tts_synthesizer(text, voice='af_heart')
for i, (gs, ps, audio) in enumerate(generator):
if i == 0:
return audio
return None
loop = asyncio.get_event_loop()
audio_data = await loop.run_in_executor(None, generate_speech)
if audio_data is None:
raise ValueError("Failed to generate audio")
sf.write(output_path, audio_data, samplerate=24000)
return output_path
except Exception as e:
logger.error(f"Error in text_to_speech: {e}")
return ""
async def process_conversation(self, audio_file_path: str, system_prompt: Optional[str] = None) -> Dict[str, Any]:
try:
transcribed_text = await self.speech_to_text(audio_file_path)
if not transcribed_text:
return {"error": "Failed to transcribe audio"}
llm_result = await self.process_with_llm(transcribed_text, system_prompt)
audio_output_path = await self.text_to_speech(llm_result["response"])
return {
"input_audio": audio_file_path,
"transcribed_text": transcribed_text,
"thinking": llm_result["thinking"],
"response_text": llm_result["response"],
"output_audio": audio_output_path,
}
except Exception as e:
logger.error(f"Error in process_conversation: {e}")
return {"error": str(e)}
# ---------------------------- GLOBAL CONVERSATION OBJECT ----------------------------
ai_conversation = AsyncAIConversation()
# ---------------------------- DEMO INITIALIZATION ----------------------------
async def demo_conversation():
await ai_conversation.initialize_models()
# ---------------------------- GRADIO WRAPPER ----------------------------
async def process_audio_gradio(audio_file, system_prompt_input):
if audio_file is None:
return "Please upload an audio file.", "", "", None
try:
result = await ai_conversation.process_conversation(
audio_file_path=audio_file,
system_prompt=system_prompt_input
)
if "error" in result:
return f"Error: {result['error']}", "", "", None
else:
return (
f"Transcribed: {result['transcribed_text']}\nThinking: {result['thinking']}",
result['response_text'],
result['output_audio'],
None
)
except Exception as e:
return f"Unexpected error: {e}", "", "", None
# ---------------------------- GRADIO INTERFACE ----------------------------
with gr.Blocks() as demo:
gr.Markdown("# Asynchronous AI Conversation System")
gr.Markdown("Upload an audio file and provide a system prompt to get a response.")
with gr.Row():
audio_input = gr.Audio(label="Upload Audio File", type="filepath")
system_prompt_input = gr.Textbox(label="System Prompt", value=system_prompt_0)
process_button = gr.Button("Process Conversation")
with gr.Column():
status_output = gr.Textbox(label="Status/Transcription/Thinking", interactive=False)
response_text_output = gr.Textbox(label="AI Response Text", interactive=False)
response_audio_output = gr.Audio(label="AI Response Audio", interactive=False)
processing_times_output = gr.JSON(label="Processing Times")
process_button.click(
fn=process_audio_gradio,
inputs=[audio_input, system_prompt_input],
outputs=[status_output, response_text_output, response_audio_output, processing_times_output]
)
# ---------------------------- MAIN LAUNCH ----------------------------
if __name__ == "__main__":
def initiate():
asyncio.run(demo_conversation())
initiate()
demo.launch(debug=False, share=True)
|