import gradio as gr from gradio_client import Client from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC import torch import librosa # Load the model and processor processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large-960h") model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-large-960h") def transcribe_speech(audio_path): if audio_path is None: raise gr.Error("No audio file provided.") speech, _ = librosa.load(audio_path, sr=16000) input_values = processor(speech, return_tensors="pt", padding="longest").input_values with torch.no_grad(): logits = model(input_values).logits predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(predicted_ids) return transcription[0] def get_dreamtalk(image_in, speech): if image_in is None or speech is None: raise gr.Error("Image or speech input is missing.") try: client = Client("https://fffiloni-dreamtalk.hf.space/") result = client.predict( speech, # filepath in 'Audio input' Audio component image_in, # filepath in 'Image' Image component "M030_front_neutral_level1_001.mat", # Literal in 'emotional style' Dropdown component api_name="/infer" ) return result['video'] except Exception as e: print(f"Error in get_dreamtalk: {e}") raise gr.Error(f"Error in get_dreamtalk: {str(e)}") def pipe(text, voice, image_in): if text is None or voice is None or image_in is None: raise gr.Error("All inputs (text, voice, image) are required.") try: speech = transcribe_speech(voice) video = get_dreamtalk(image_in, speech) return video except Exception as e: print(f"An error occurred while processing: {e}") raise gr.Error(f"An error occurred while processing: {str(e)}") with gr.Blocks() as demo: with gr.Column(): gr.HTML("""

Talking Image

Clone your voice and make your photos speak.

""") with gr.Row(): with gr.Column(): image_in = gr.Image(label="Portrait IN", type="filepath", value="./creatus.jpg") with gr.Column(): voice = gr.Audio(type="filepath", label="Upload or Record Speaker audio (Optional voice cloning)") text = gr.Textbox(label="text") submit_btn = gr.Button('Submit') with gr.Column(): video_o = gr.Video(label="Video result") submit_btn.click( fn=pipe, inputs=[text, voice, image_in], outputs=[video_o], concurrency_limit=3 ) demo.queue(max_size=10).launch(show_error=True, show_api=False)