import gradio as gr import numpy as np import pandas as pd import seaborn as sns cm = sns.light_palette("green", as_cmap=True) data = pd.read_csv("all_res.csv") data["coherence"] = np.sqrt(data["c_in"] * data["c_ex"]) data["interpretability"] = np.sqrt(data["coherence"] * data["diversity"]) data["v_measure"] = ( 2 * data["homogeneity_score"] * data["completeness_score"] / (data["homogeneity_score"] + data["completeness_score"]) ) metrics = [ "interpretability", "coherence", "diversity", "fowlkes_mallows_score", "adjusted_mutual_info_score", "v_measure", ] summary = data.groupby("task")[metrics].rank(pct=True) summary["model"] = data["model"] summary = ( summary.groupby("model").mean().sort_values("interpretability", ascending=False) ) # summary["dps"] = data.groupby("model")["dps"].mean() summary = summary.reset_index() summary.columns = [ "Model", "Interpretability", "Coherence", "Diversity", "FMI", "AMI", "V-score", ] styler = summary.style.format(precision=2).background_gradient(cmap="Greens") with gr.Blocks() as demo: table = gr.DataFrame(styler, show_search="filter", pinned_columns=1) demo.launch( theme=gr.themes.Base(font=[gr.themes.GoogleFont("Ubuntu"), "Arial", "sans-serif"]), )