import pandas as pd # Load the Dataset 1 (Fake Job Postings CSV) df1 = pd.read_csv("/Users/kathrynhabib/Downloads/fake_job_postings.csv") # Combine 'description' and 'salary' columns into 'text' df1['description'] = df1['description'].fillna('') # Handle missing descriptions df1['salary_range'] = df1['salary_range'].fillna('') # Handle missing salary info df1['text'] = df1['description'] + " " + df1['salary_range'] # Map 'fraudulent' to 'label' (0: 'real', 1: 'fake') df1['target'] = df1['fraudulent'].map({0: 'real', 1: 'fake'}) # Keep only relevant columns df1 = df1[['text', 'target']] # Save to CSV df1.to_csv("fake_job_postings_for_autotrain.csv", index=False) print(df1.head()) # Load Dataset 2 df2 = pd.read_csv("/Users/kathrynhabib/Downloads/Fake Postings.csv") # Combine necessary columns into 'text' df2['description'] = df2['description'].fillna('') df2['salary_range'] = df2['salary_range'].fillna('') df2['text'] = df2['description'] + " " + df2['salary_range'] # Assuming 'label' is in the 'fraudulent' column (similar to Dataset 1) df2['target'] = df2['fraudulent'].map({0: 'real', 1: 'fake'}) # Keep relevant columns df2 = df2[['text', 'target']] # Save to CSV df2.to_csv("Fake Postings_for_autotrain.csv", index=False) print(df2.head())