import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline from peft import PeftModel # --- Load base model + your LoRA adapter --- BASE_MODEL = "EleutherAI/gpt-neo-125M" ADAPTER_MODEL = "khaliqabdull/humanizer3.0-lora" # Load tokenizer tokenizer = AutoTokenizer.from_pretrained(ADAPTER_MODEL) if tokenizer.pad_token is None: tokenizer.pad_token = tokenizer.eos_token # Load base model model = AutoModelForCausalLM.from_pretrained( BASE_MODEL, device_map="auto", load_in_8bit=True ) # Attach LoRA adapter model = PeftModel.from_pretrained(model, ADAPTER_MODEL) # Create pipeline pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer ) # --- Humanizer function --- def humanize_text(text): prompt = f"Input:\n{text}\n\nHuman-like rewrite:\n" result = pipe( prompt, max_new_tokens=120, do_sample=True, temperature=0.7, top_p=0.9 ) return result[0]["generated_text"] # --- Gradio UI --- iface = gr.Interface( fn=humanize_text, inputs=gr.Textbox(lines=6, placeholder="Paste AI-like text here..."), outputs="text", title="🤖 Humanizer 3.0", description="Enter AI-like text and get a human-like rewrite." ) if __name__ == "__main__": iface.launch()