update
Browse files- .gitattributes +1 -0
- .gitignore +2 -0
- app.py +38 -0
- best_model_state.bin +3 -0
- classifier.py +50 -0
- images/EDA1.png +3 -0
- images/EDA2.png +3 -0
- images/EDA3-votes.png +3 -0
- images/Input pipeline.png +3 -0
- images/confusion_matrix.png +3 -0
- images/model_on_cpu.png +3 -0
- images/model_on_gpu.png +3 -0
- images/readme.md +1 -0
- images/train_test_scores.png +3 -0
- images/train_val_accuracy.png +3 -0
- requirements.txt +91 -0
.gitattributes
CHANGED
|
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 35 |
+
*.png filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
env/
|
| 2 |
+
__pycache__/
|
app.py
ADDED
|
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from classifier import classify
|
| 2 |
+
from PIL import Image
|
| 3 |
+
import streamlit as st
|
| 4 |
+
|
| 5 |
+
st.title("Twitter Sentiment Analysis using BERT model")
|
| 6 |
+
|
| 7 |
+
st.subheader("Motivation")
|
| 8 |
+
st.markdown("""
|
| 9 |
+
Cyberbullying is a serious problem in today's world. It is a form of bullying that takes place using electronic technology. This model will act as an tool for the detection of the abusive content
|
| 10 |
+
in the tweets. This model can be used by the social media platforms to detect the abusive content in the tweets and take necessary action.
|
| 11 |
+
|
| 12 |
+
Huggingface provides an easy interfce to test the models before the use.
|
| 13 |
+
""")
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
text = st.text_input("Enter a tweet to classify it as either Normal or Abusive. (Press enter to submit)",
|
| 17 |
+
value="I love DCNM course", max_chars=512, key=None, type="default",
|
| 18 |
+
help=None, autocomplete=None)
|
| 19 |
+
st.markdown(f"The tweet is classified as: **{classify(text)}**")
|
| 20 |
+
|
| 21 |
+
st.markdown("Try out for abusive _Giving and taking dowry is crappy thing_")
|
| 22 |
+
|
| 23 |
+
st.subheader("About the model")
|
| 24 |
+
st.markdown("""
|
| 25 |
+
Model was trained on twitter dataset ENCASEH2020 from Founta, A.M et. al. (2018) [3]. BERT Tiny model [1][2][5] was chosen for this project because, empirically,
|
| 26 |
+
giving better result with least number of parameters. The model was trained for 10 epochs with batch size of 32 and AdamW optimizer with learning rate of 1e-2 and loss as cross entropy.
|
| 27 |
+
""")
|
| 28 |
+
|
| 29 |
+
st.image("./images/train_val_accuracy.png [4]", caption="Train and Validation Accuracy", use_column_width=True)
|
| 30 |
+
st.image("./images/train_test_scores.png [4]", caption="Classification Report", use_column_width=True)
|
| 31 |
+
st.image("./images/confusion_matrix.png [4]", caption="Confusion Matrix", use_column_width=True)
|
| 32 |
+
|
| 33 |
+
st.subheader("References")
|
| 34 |
+
st.markdown("1. [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805)")
|
| 35 |
+
st.markdown("2. [BERT-Tiny: A Tiny BERT for Natural Language Understanding](https://arxiv.org/abs/1909.10351)")
|
| 36 |
+
st.markdown("3. [Founta, A.M., Djouvas, C., Chatzakou, D., Leontiadis, I., Blackburn, J., Stringhini, G., Vakali, A., Sirivianos, M., & Kourtellis, N. (2018).Large Scale Crowdsourcing and Characterization of Twitter Abusive Behavior. In 11th International Conference on Web and Social Media, ICWSM 2018.](https://arxiv.org/abs/1802.00393)")
|
| 37 |
+
st.markdown("4. [Ajay S, Ram, Kowsik N D, Navaneeth D, Amarnath C N, Cyberbullying Detection using Bidirectional Encoder Representation from Transformers 2022](https://github.com/Cubemet/bert-models)")
|
| 38 |
+
st.markdown("5. [Base Model from nreimers](https://huggingface.co/nreimers/BERT-Tiny_L-2_H-128_A-2")
|
best_model_state.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e6cfb5ee667393eef14cb0bef4b8193a0b1690e743ebf4c000f57fce39943542
|
| 3 |
+
size 17564519
|
classifier.py
ADDED
|
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import transformers
|
| 3 |
+
from transformers import BertModel, BertTokenizer, AutoTokenizer
|
| 4 |
+
from torch import nn, optim
|
| 5 |
+
from torch.utils.data import Dataset, DataLoader
|
| 6 |
+
import torch.nn.functional as F
|
| 7 |
+
|
| 8 |
+
###########################################################
|
| 9 |
+
review_text = "I love you"
|
| 10 |
+
###########################################################
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
PRE_TRAINED_MODEL_NAME = 'nreimers/BERT-Tiny_L-2_H-128_A-2'
|
| 14 |
+
class_names = ["Normal", "Abusive"]
|
| 15 |
+
MAX_LEN = "max_length"
|
| 16 |
+
|
| 17 |
+
class CyberbullyingClassifier(nn.Module):
|
| 18 |
+
|
| 19 |
+
def __init__(self, n_classes):
|
| 20 |
+
super(CyberbullyingClassifier, self).__init__()
|
| 21 |
+
self.bert = BertModel.from_pretrained(PRE_TRAINED_MODEL_NAME).to("cpu")
|
| 22 |
+
# self.drop = nn.Dropout(p=0.3)
|
| 23 |
+
self.out = nn.Linear(self.bert.config.hidden_size, n_classes)
|
| 24 |
+
|
| 25 |
+
def forward(self, input_ids, attention_mask):
|
| 26 |
+
bert_out = self.bert(
|
| 27 |
+
input_ids=input_ids,
|
| 28 |
+
attention_mask=attention_mask
|
| 29 |
+
)
|
| 30 |
+
pooled_output = bert_out[1]
|
| 31 |
+
# output = self.drop(pooled_output)
|
| 32 |
+
return self.out(pooled_output)
|
| 33 |
+
|
| 34 |
+
tokenizer = AutoTokenizer.from_pretrained(PRE_TRAINED_MODEL_NAME)
|
| 35 |
+
model = CyberbullyingClassifier(2)
|
| 36 |
+
model.load_state_dict(torch.load('./best_model_state.bin', map_location=torch.device('cpu')))
|
| 37 |
+
|
| 38 |
+
def classify(review_text):
|
| 39 |
+
encoded_review = tokenizer(review_text, padding=MAX_LEN, truncation=True, return_tensors="pt")
|
| 40 |
+
|
| 41 |
+
input_ids = encoded_review['input_ids'].to('cpu')
|
| 42 |
+
attention_mask = encoded_review['attention_mask'].to('cpu')
|
| 43 |
+
|
| 44 |
+
output = model(input_ids, attention_mask)
|
| 45 |
+
_, prediction = torch.max(output, dim=1)
|
| 46 |
+
|
| 47 |
+
print(f'Review text: {review_text}')
|
| 48 |
+
print(f'Sentiment : {class_names[prediction]}')
|
| 49 |
+
|
| 50 |
+
return class_names[prediction]
|
images/EDA1.png
ADDED
|
Git LFS Details
|
images/EDA2.png
ADDED
|
Git LFS Details
|
images/EDA3-votes.png
ADDED
|
Git LFS Details
|
images/Input pipeline.png
ADDED
|
Git LFS Details
|
images/confusion_matrix.png
ADDED
|
Git LFS Details
|
images/model_on_cpu.png
ADDED
|
Git LFS Details
|
images/model_on_gpu.png
ADDED
|
Git LFS Details
|
images/readme.md
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
|
images/train_test_scores.png
ADDED
|
Git LFS Details
|
images/train_val_accuracy.png
ADDED
|
Git LFS Details
|
requirements.txt
ADDED
|
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
aiohttp==3.8.4
|
| 2 |
+
aiosignal==1.3.1
|
| 3 |
+
altair==4.2.2
|
| 4 |
+
asgiref==3.6.0
|
| 5 |
+
async-timeout==4.0.2
|
| 6 |
+
attrs==23.1.0
|
| 7 |
+
backports.zoneinfo==0.2.1
|
| 8 |
+
blinker==1.6.2
|
| 9 |
+
cachetools==5.3.0
|
| 10 |
+
certifi==2022.12.7
|
| 11 |
+
charset-normalizer==3.1.0
|
| 12 |
+
click==8.1.3
|
| 13 |
+
cmake==3.26.3
|
| 14 |
+
datasets==2.11.0
|
| 15 |
+
decorator==5.1.1
|
| 16 |
+
dill==0.3.6
|
| 17 |
+
Django==4.2
|
| 18 |
+
entrypoints==0.4
|
| 19 |
+
filelock==3.12.0
|
| 20 |
+
frozenlist==1.3.3
|
| 21 |
+
fsspec==2023.4.0
|
| 22 |
+
gitdb==4.0.10
|
| 23 |
+
GitPython==3.1.31
|
| 24 |
+
huggingface-hub==0.13.4
|
| 25 |
+
idna==3.4
|
| 26 |
+
importlib-metadata==6.5.0
|
| 27 |
+
importlib-resources==5.12.0
|
| 28 |
+
Jinja2==3.1.2
|
| 29 |
+
jsonschema==4.17.3
|
| 30 |
+
lit==16.0.1
|
| 31 |
+
markdown-it-py==2.2.0
|
| 32 |
+
MarkupSafe==2.1.2
|
| 33 |
+
mdurl==0.1.2
|
| 34 |
+
mpmath==1.3.0
|
| 35 |
+
multidict==6.0.4
|
| 36 |
+
multiprocess==0.70.14
|
| 37 |
+
networkx==3.1
|
| 38 |
+
numpy==1.24.2
|
| 39 |
+
nvidia-cublas-cu11==11.10.3.66
|
| 40 |
+
nvidia-cuda-cupti-cu11==11.7.101
|
| 41 |
+
nvidia-cuda-nvrtc-cu11==11.7.99
|
| 42 |
+
nvidia-cuda-runtime-cu11==11.7.99
|
| 43 |
+
nvidia-cudnn-cu11==8.5.0.96
|
| 44 |
+
nvidia-cufft-cu11==10.9.0.58
|
| 45 |
+
nvidia-curand-cu11==10.2.10.91
|
| 46 |
+
nvidia-cusolver-cu11==11.4.0.1
|
| 47 |
+
nvidia-cusparse-cu11==11.7.4.91
|
| 48 |
+
nvidia-nccl-cu11==2.14.3
|
| 49 |
+
nvidia-nvtx-cu11==11.7.91
|
| 50 |
+
packaging==23.1
|
| 51 |
+
pandas==1.5.3
|
| 52 |
+
Pillow==9.5.0
|
| 53 |
+
pkgutil-resolve-name==1.3.10
|
| 54 |
+
protobuf==3.20.3
|
| 55 |
+
pyarrow==11.0.0
|
| 56 |
+
pydeck==0.8.1b0
|
| 57 |
+
Pygments==2.15.1
|
| 58 |
+
Pympler==1.0.1
|
| 59 |
+
pyrsistent==0.19.3
|
| 60 |
+
python-dateutil==2.8.2
|
| 61 |
+
pytz==2023.3
|
| 62 |
+
pytz-deprecation-shim==0.1.0.post0
|
| 63 |
+
PyYAML==6.0
|
| 64 |
+
regex==2023.3.23
|
| 65 |
+
requests==2.28.2
|
| 66 |
+
responses==0.18.0
|
| 67 |
+
rich==13.3.4
|
| 68 |
+
six==1.16.0
|
| 69 |
+
smmap==5.0.0
|
| 70 |
+
sqlparse==0.4.4
|
| 71 |
+
streamlit==1.21.0
|
| 72 |
+
sympy==1.11.1
|
| 73 |
+
tokenizers==0.13.3
|
| 74 |
+
toml==0.10.2
|
| 75 |
+
toolz==0.12.0
|
| 76 |
+
torch==2.0.0
|
| 77 |
+
torchaudio==2.0.1
|
| 78 |
+
torchvision==0.15.1
|
| 79 |
+
tornado==6.3
|
| 80 |
+
tqdm==4.65.0
|
| 81 |
+
transformers==4.28.1
|
| 82 |
+
triton==2.0.0
|
| 83 |
+
typing-extensions==4.5.0
|
| 84 |
+
tzdata==2023.3
|
| 85 |
+
tzlocal==4.3
|
| 86 |
+
urllib3==1.26.15
|
| 87 |
+
validators==0.20.0
|
| 88 |
+
watchdog==3.0.0
|
| 89 |
+
xxhash==3.2.0
|
| 90 |
+
yarl==1.8.2
|
| 91 |
+
zipp==3.15.0
|