Spaces:
Sleeping
Sleeping
Changed:))
Browse files
app.py
CHANGED
@@ -6,12 +6,12 @@ import json
|
|
6 |
import os
|
7 |
from tqdm import tqdm
|
8 |
from huggingface_hub import HfApi, login
|
9 |
-
import datetime
|
10 |
|
11 |
# --- Configuration for the Gradio app's internal logic ---
|
12 |
# Local cache directory (data will be accumulated here first)
|
13 |
OUTPUT_DIR = "generated"
|
14 |
-
DATA_FILE = os.path.join(OUTPUT_DIR, "
|
15 |
|
16 |
# Hugging Face Dataset repository to push to
|
17 |
HF_DATASET_REPO_ID = "kulia-moon/LimeStory-1.0" # This is the target dataset
|
@@ -22,12 +22,27 @@ client = openai.OpenAI(
|
|
22 |
api_key="none" # Pollinations.ai doesn't require an API key
|
23 |
)
|
24 |
|
25 |
-
# Define models
|
|
|
26 |
AVAILABLE_MODELS = {
|
27 |
"openai": {"description": "GPT-4o mini (generally fast, good all-rounder)", "speed": "Fast"},
|
28 |
"gemini": {"description": "Gemini 2.0 Flash (designed for speed)", "speed": "Very Fast"},
|
29 |
"mistral": {"description": "Mistral 3.1 (often performant for its size)", "speed": "Fast"},
|
30 |
-
"llama": {"description": "Llama 3.3 70B (larger,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
}
|
32 |
|
33 |
# Diverse Names Dataset
|
@@ -38,7 +53,7 @@ DIVERSE_NAMES = [
|
|
38 |
"Eva", "Omar", "Anya", "Arthur", "Zoe", "Dante", "Freya", "Ivan", "Layla", "Milo"
|
39 |
]
|
40 |
|
41 |
-
# Role-playing system prompts
|
42 |
role_play_prompts = [
|
43 |
"You are a mischievous but sweet little dragon, Puff, who loves shiny objects and telling riddles. Respond with playful fire sparks and curious questions.",
|
44 |
"You are a fluffy cloud, Nimbus, who enjoys floating peacefully and bringing gentle rain to flowers. Speak with soft, dreamy words and comforting observations.",
|
@@ -80,40 +95,39 @@ def chat(system, prompt, selected_model_name, seed=None, num_exchanges=5):
|
|
80 |
]
|
81 |
|
82 |
try:
|
83 |
-
|
84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
model=selected_model_name,
|
86 |
-
messages=
|
87 |
-
max_tokens=
|
88 |
-
temperature=0.
|
89 |
-
seed=seed
|
90 |
)
|
91 |
-
|
92 |
|
93 |
-
conversation.append({"from": "
|
94 |
-
|
95 |
-
if i < num_exchanges - 1:
|
96 |
-
follow_up_prompt_messages = [
|
97 |
-
{"role": "system", "content": f"You are a helpful and engaging assistant. Based on the last response, generate a polite, open-ended, and cute follow-up question or statement to keep a friendly conversation going. Make it relevant to the last message and consistent with a 'cute' and positive tone."},
|
98 |
-
{"role": "assistant", "content": gpt_response},
|
99 |
-
{"role": "user", "content": "Generate a cute and friendly follow-up."}
|
100 |
-
]
|
101 |
-
|
102 |
-
follow_up_response = client.chat.completions.create(
|
103 |
-
model=selected_model_name,
|
104 |
-
messages=follow_up_prompt_messages,
|
105 |
-
max_tokens=70,
|
106 |
-
temperature=0.8,
|
107 |
-
seed=seed + 1000
|
108 |
-
)
|
109 |
-
follow_up = follow_up_response.choices[0].message.content.strip()
|
110 |
-
|
111 |
-
conversation.append({"from": "human", "value": follow_up})
|
112 |
-
|
113 |
-
messages.append({"role": "assistant", "content": gpt_response})
|
114 |
-
messages.append({"role": "user", "content": follow_up})
|
115 |
-
seed += 1
|
116 |
|
|
|
|
|
|
|
|
|
117 |
return conversation
|
118 |
except Exception as e:
|
119 |
error_message = f"An error occurred with model {selected_model_name}: {e}"
|
@@ -155,10 +169,11 @@ def push_to_huggingface_dataset():
|
|
155 |
f.write(json.dumps(conv) + "\n")
|
156 |
|
157 |
# Push the temporary file to the dataset repo
|
158 |
-
|
|
|
159 |
api.upload_file(
|
160 |
-
path_or_fileobj=
|
161 |
-
path_in_repo=
|
162 |
repo_id=HF_DATASET_REPO_ID,
|
163 |
repo_type="dataset", # Specify repo_type="dataset"
|
164 |
commit_message=commit_message,
|
@@ -179,7 +194,7 @@ def push_to_huggingface_dataset():
|
|
179 |
|
180 |
# --- Gradio Interface Logic ---
|
181 |
|
182 |
-
def generate_and_display_conversations(num_conversations_input, custom_prompts_input):
|
183 |
"""
|
184 |
Function to be called by Gradio to generate and return conversations,
|
185 |
and then automatically push to the dataset.
|
@@ -207,27 +222,37 @@ def generate_and_display_conversations(num_conversations_input, custom_prompts_i
|
|
207 |
model_names_to_use = list(AVAILABLE_MODELS.keys())
|
208 |
|
209 |
generation_log = []
|
210 |
-
|
|
|
211 |
generation_log.append(f"Generating {num_conversations} conversations.")
|
|
|
212 |
|
213 |
for i in tqdm(range(num_conversations), desc="Generating conversations"):
|
214 |
seed = random.randint(0, 1000000)
|
215 |
-
|
|
|
|
|
|
|
|
|
|
|
216 |
|
217 |
random_name = random.choice(DIVERSE_NAMES)
|
218 |
prompt_template = random.choice(current_prompts)
|
|
|
219 |
prompt = prompt_template.replace("[NAME]", random_name)
|
220 |
|
221 |
-
selected_model_name = random.choice(model_names_to_use)
|
222 |
|
|
|
223 |
conversation = chat(system, prompt, selected_model_name, seed=seed, num_exchanges=5)
|
|
|
224 |
if len(conversation) > 1 and not any(d.get("from") == "error" for d in conversation):
|
225 |
new_conversations.append({"model_used": selected_model_name, "conversations": conversation})
|
226 |
-
generation_log.append(f"
|
227 |
else:
|
228 |
-
generation_log.append(f"Skipping
|
229 |
if conversation and conversation[-1].get("from") == "error":
|
230 |
-
generation_log.append(f"Error details: {conversation[-1]['value']}")
|
231 |
|
232 |
all_conversations = existing_conversations + new_conversations
|
233 |
|
@@ -242,7 +267,7 @@ def generate_and_display_conversations(num_conversations_input, custom_prompts_i
|
|
242 |
# --- Auto-push to Hugging Face Dataset ---
|
243 |
push_status = push_to_huggingface_dataset()
|
244 |
generation_log.append(push_status)
|
245 |
-
generation_log.append(f"Process complete at {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
|
246 |
|
247 |
return json.dumps(all_conversations, indent=2), "\n".join(generation_log)
|
248 |
|
@@ -257,6 +282,13 @@ with gr.Blocks() as demo:
|
|
257 |
with gr.Row():
|
258 |
num_conversations_input = gr.Slider(minimum=1, maximum=20, value=3, step=1, label="Number of Conversations to Generate", info="More conversations take longer and might hit API limits.")
|
259 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
260 |
custom_prompts_input = gr.Textbox(
|
261 |
label="Custom Initial Prompts (optional)",
|
262 |
placeholder="e.g., What's your favorite color?, Tell me a joke, What makes you happy?",
|
@@ -267,11 +299,11 @@ with gr.Blocks() as demo:
|
|
267 |
generate_button = gr.Button("Generate & Push Conversations")
|
268 |
|
269 |
output_conversations = gr.JSON(label="Generated Conversations (Content of conversations.jsonl)")
|
270 |
-
output_log = gr.Textbox(label="Process Log", interactive=False, lines=10)
|
271 |
|
272 |
generate_button.click(
|
273 |
fn=generate_and_display_conversations,
|
274 |
-
inputs=[num_conversations_input, custom_prompts_input],
|
275 |
outputs=[output_conversations, output_log],
|
276 |
show_progress=True
|
277 |
)
|
@@ -282,6 +314,9 @@ with gr.Blocks() as demo:
|
|
282 |
f"`{HF_DATASET_REPO_ID}` using a Hugging Face token securely stored as a Space Secret (`HF_TOKEN`). "
|
283 |
"User tokens are not required."
|
284 |
)
|
|
|
|
|
|
|
285 |
|
286 |
# Launch the Gradio app
|
287 |
if __name__ == "__main__":
|
|
|
6 |
import os
|
7 |
from tqdm import tqdm
|
8 |
from huggingface_hub import HfApi, login
|
9 |
+
import datetime
|
10 |
|
11 |
# --- Configuration for the Gradio app's internal logic ---
|
12 |
# Local cache directory (data will be accumulated here first)
|
13 |
OUTPUT_DIR = "generated"
|
14 |
+
DATA_FILE = os.path.join(OUTPUT_DIR, f"conversations_{datetime.now()}.jsonl")
|
15 |
|
16 |
# Hugging Face Dataset repository to push to
|
17 |
HF_DATASET_REPO_ID = "kulia-moon/LimeStory-1.0" # This is the target dataset
|
|
|
22 |
api_key="none" # Pollinations.ai doesn't require an API key
|
23 |
)
|
24 |
|
25 |
+
# Define ALL available models from https://text.pollinations.ai/models
|
26 |
+
# This list is more comprehensive. Speeds are approximate relative to each other.
|
27 |
AVAILABLE_MODELS = {
|
28 |
"openai": {"description": "GPT-4o mini (generally fast, good all-rounder)", "speed": "Fast"},
|
29 |
"gemini": {"description": "Gemini 2.0 Flash (designed for speed)", "speed": "Very Fast"},
|
30 |
"mistral": {"description": "Mistral 3.1 (often performant for its size)", "speed": "Fast"},
|
31 |
+
"llama": {"description": "Llama 3.3 70B (larger, good for diversity)", "speed": "Moderate"},
|
32 |
+
"claude": {"description": "Claude 3.5 Haiku (via Pollinations gateway, good for chat)", "speed": "Moderate"},
|
33 |
+
"qwen-coder": {"description": "Qwen 2.5 Coder 32B (coder-focused, general chat is okay)", "speed": "Moderate"},
|
34 |
+
"gemma": {"description": "Gemma 7B (Google's open model, good generalist)", "speed": "Moderate"},
|
35 |
+
"dbrx": {"description": "DBRX (Databricks's large open model, might be slower)", "speed": "Slow"},
|
36 |
+
"mixtral": {"description": "Mixtral 8x7B (Mixture of Experts, good balance of speed/quality)", "speed": "Fast/Moderate"},
|
37 |
+
"command-r": {"description": "Command R (Cohere's powerful model)", "speed": "Moderate"},
|
38 |
+
"cohere-chat": {"description": "Cohere's general chat model", "speed": "Moderate"},
|
39 |
+
"pplx-7b": {"description": "Perplexity Llama 2 7B (fast, good code/text)", "speed": "Fast"},
|
40 |
+
"pplx-70b": {"description": "Perplexity Llama 2 70B (larger, more capable Perplexity model)", "speed": "Moderate"},
|
41 |
+
"yi-34b": {"description": "Yi 34B (zero-one.ai model, capable generalist)", "speed": "Moderate"},
|
42 |
+
"grok": {"description": "Grok (X.ai's model, may have specific tone/style)", "speed": "Moderate"},
|
43 |
+
"stable-lm": {"description": "Stable LM (Stability AI's model)", "speed": "Fast"},
|
44 |
+
"nous-hermes": {"description": "Nous Hermes (fine-tune of Mistral)", "speed": "Fast"},
|
45 |
+
"openchat": {"description": "OpenChat 3.5 (fine-tune of Mistral)", "speed": "Fast"},
|
46 |
}
|
47 |
|
48 |
# Diverse Names Dataset
|
|
|
53 |
"Eva", "Omar", "Anya", "Arthur", "Zoe", "Dante", "Freya", "Ivan", "Layla", "Milo"
|
54 |
]
|
55 |
|
56 |
+
# Role-playing system prompts (defaults if user doesn't provide one)
|
57 |
role_play_prompts = [
|
58 |
"You are a mischievous but sweet little dragon, Puff, who loves shiny objects and telling riddles. Respond with playful fire sparks and curious questions.",
|
59 |
"You are a fluffy cloud, Nimbus, who enjoys floating peacefully and bringing gentle rain to flowers. Speak with soft, dreamy words and comforting observations.",
|
|
|
95 |
]
|
96 |
|
97 |
try:
|
98 |
+
response = client.chat.completions.create(
|
99 |
+
model=selected_model_name,
|
100 |
+
messages=messages,
|
101 |
+
max_tokens=150,
|
102 |
+
temperature=0.9,
|
103 |
+
seed=seed
|
104 |
+
)
|
105 |
+
gpt_response = response.choices[0].message.content.strip()
|
106 |
+
|
107 |
+
conversation.append({"from": "gpt", "value": gpt_response})
|
108 |
+
|
109 |
+
for i in range(num_exchanges - 1): # Loop for subsequent exchanges
|
110 |
+
follow_up_prompt_messages = [
|
111 |
+
{"role": "system", "content": f"You are a helpful and engaging assistant. Based on the last response, generate a polite, open-ended, and cute follow-up question or statement to keep a friendly conversation going. Make it relevant to the last message and consistent with a 'cute' and positive tone."},
|
112 |
+
{"role": "assistant", "content": gpt_response},
|
113 |
+
{"role": "user", "content": "Generate a cute and friendly follow-up."}
|
114 |
+
]
|
115 |
+
|
116 |
+
follow_up_response = client.chat.completions.create(
|
117 |
model=selected_model_name,
|
118 |
+
messages=follow_up_prompt_messages,
|
119 |
+
max_tokens=70,
|
120 |
+
temperature=0.8,
|
121 |
+
seed=seed + 1000 + i # Vary seed for follow-ups
|
122 |
)
|
123 |
+
follow_up = follow_up_response.choices[0].message.content.strip()
|
124 |
|
125 |
+
conversation.append({"from": "human", "value": follow_up})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
|
127 |
+
messages.append({"role": "assistant", "content": gpt_response})
|
128 |
+
messages.append({"role": "user", "content": follow_up})
|
129 |
+
gpt_response = follow_up_response.choices[0].message.content.strip() # Update gpt_response for next turn's context
|
130 |
+
|
131 |
return conversation
|
132 |
except Exception as e:
|
133 |
error_message = f"An error occurred with model {selected_model_name}: {e}"
|
|
|
169 |
f.write(json.dumps(conv) + "\n")
|
170 |
|
171 |
# Push the temporary file to the dataset repo
|
172 |
+
current_time_str = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')
|
173 |
+
commit_message = f"Update conversations.jsonl from Gradio app on {current_time_str} (An Nhơn, Binh Dinh, Vietnam)"
|
174 |
api.upload_file(
|
175 |
+
path_or_fileobj=DATA_FILE ,
|
176 |
+
path_in_repo=DATA_FILE, # The target file name within the dataset repo
|
177 |
repo_id=HF_DATASET_REPO_ID,
|
178 |
repo_type="dataset", # Specify repo_type="dataset"
|
179 |
commit_message=commit_message,
|
|
|
194 |
|
195 |
# --- Gradio Interface Logic ---
|
196 |
|
197 |
+
def generate_and_display_conversations(num_conversations_input, custom_prompts_input, custom_system_prompt_input):
|
198 |
"""
|
199 |
Function to be called by Gradio to generate and return conversations,
|
200 |
and then automatically push to the dataset.
|
|
|
222 |
model_names_to_use = list(AVAILABLE_MODELS.keys())
|
223 |
|
224 |
generation_log = []
|
225 |
+
current_time_loc = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S') + " (An Nhơn, Binh Dinh, Vietnam)"
|
226 |
+
generation_log.append(f"Starting conversation generation at {current_time_loc}")
|
227 |
generation_log.append(f"Generating {num_conversations} conversations.")
|
228 |
+
generation_log.append(f"Models to be used: {', '.join(model_names_to_use)}")
|
229 |
|
230 |
for i in tqdm(range(num_conversations), desc="Generating conversations"):
|
231 |
seed = random.randint(0, 1000000)
|
232 |
+
|
233 |
+
# Select system prompt: user's custom prompt if provided, else random from defaults
|
234 |
+
if custom_system_prompt_input:
|
235 |
+
system = custom_system_prompt_input.strip()
|
236 |
+
else:
|
237 |
+
system = random.choice(role_play_prompts)
|
238 |
|
239 |
random_name = random.choice(DIVERSE_NAMES)
|
240 |
prompt_template = random.choice(current_prompts)
|
241 |
+
# Ensure that if [NAME] is not in the template, it's not a problem
|
242 |
prompt = prompt_template.replace("[NAME]", random_name)
|
243 |
|
244 |
+
selected_model_name = random.choice(model_names_to_use) # Randomly pick from ALL models
|
245 |
|
246 |
+
generation_log.append(f"[{datetime.datetime.now().strftime('%H:%M:%S')}] Generating conv {i+1}/{num_conversations} with '{selected_model_name}' (System: '{system[:50]}...')") # Log first 50 chars of system prompt
|
247 |
conversation = chat(system, prompt, selected_model_name, seed=seed, num_exchanges=5)
|
248 |
+
|
249 |
if len(conversation) > 1 and not any(d.get("from") == "error" for d in conversation):
|
250 |
new_conversations.append({"model_used": selected_model_name, "conversations": conversation})
|
251 |
+
generation_log.append(f"[{datetime.datetime.now().strftime('%H:%M:%S')}] Successfully generated conv {i+1}/{num_conversations}.")
|
252 |
else:
|
253 |
+
generation_log.append(f"[{datetime.datetime.now().strftime('%H:%M:%S')}] Skipping conv {i+1}/{num_conversations} due to error or no content.")
|
254 |
if conversation and conversation[-1].get("from") == "error":
|
255 |
+
generation_log.append(f" Error details: {conversation[-1]['value']}")
|
256 |
|
257 |
all_conversations = existing_conversations + new_conversations
|
258 |
|
|
|
267 |
# --- Auto-push to Hugging Face Dataset ---
|
268 |
push_status = push_to_huggingface_dataset()
|
269 |
generation_log.append(push_status)
|
270 |
+
generation_log.append(f"Process complete at {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')} (An Nhơn, Binh Dinh, Vietnam)")
|
271 |
|
272 |
return json.dumps(all_conversations, indent=2), "\n".join(generation_log)
|
273 |
|
|
|
282 |
with gr.Row():
|
283 |
num_conversations_input = gr.Slider(minimum=1, maximum=20, value=3, step=1, label="Number of Conversations to Generate", info="More conversations take longer and might hit API limits.")
|
284 |
|
285 |
+
custom_system_prompt_input = gr.Textbox(
|
286 |
+
label="Custom System Prompt (optional)",
|
287 |
+
placeholder="e.g., You are a helpful and kind AI assistant.",
|
288 |
+
info="Define the AI's role or personality. If left empty, a random cute role-play prompt will be used.",
|
289 |
+
lines=3
|
290 |
+
)
|
291 |
+
|
292 |
custom_prompts_input = gr.Textbox(
|
293 |
label="Custom Initial Prompts (optional)",
|
294 |
placeholder="e.g., What's your favorite color?, Tell me a joke, What makes you happy?",
|
|
|
299 |
generate_button = gr.Button("Generate & Push Conversations")
|
300 |
|
301 |
output_conversations = gr.JSON(label="Generated Conversations (Content of conversations.jsonl)")
|
302 |
+
output_log = gr.Textbox(label="Process Log", interactive=False, lines=10, max_lines=20) # Increased max_lines for more log visibility
|
303 |
|
304 |
generate_button.click(
|
305 |
fn=generate_and_display_conversations,
|
306 |
+
inputs=[num_conversations_input, custom_prompts_input, custom_system_prompt_input],
|
307 |
outputs=[output_conversations, output_log],
|
308 |
show_progress=True
|
309 |
)
|
|
|
314 |
f"`{HF_DATASET_REPO_ID}` using a Hugging Face token securely stored as a Space Secret (`HF_TOKEN`). "
|
315 |
"User tokens are not required."
|
316 |
)
|
317 |
+
current_datetime_vietnam = datetime.datetime.now(datetime.timezone(datetime.timedelta(hours=7))).strftime('%Y-%m-%d %H:%M:%S %Z%z')
|
318 |
+
gr.Markdown(f"Current server time: {current_datetime_vietnam} (Vietnam)")
|
319 |
+
|
320 |
|
321 |
# Launch the Gradio app
|
322 |
if __name__ == "__main__":
|