File size: 4,211 Bytes
f4ba42f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# modified from DUSt3R

import numpy as np
from dust3r.utils.device import to_numpy
from dust3r.utils.geometry import inv, geotrf


def reproject_view(pts3d, view2):
    shape = view2["pts3d"].shape[:2]
    return reproject(
        pts3d, view2["camera_intrinsics"], inv(view2["camera_pose"]), shape
    )


def reproject(pts3d, K, world2cam, shape):
    H, W, THREE = pts3d.shape
    assert THREE == 3

    # reproject in camera2 space
    with np.errstate(divide="ignore", invalid="ignore"):
        pos = geotrf(K @ world2cam[:3], pts3d, norm=1, ncol=2)

    # quantize to pixel positions
    return (H, W), ravel_xy(pos, shape)


def ravel_xy(pos, shape):
    H, W = shape
    with np.errstate(invalid="ignore"):
        qx, qy = pos.reshape(-1, 2).round().astype(np.int32).T
    quantized_pos = qx.clip(min=0, max=W - 1, out=qx) + W * qy.clip(
        min=0, max=H - 1, out=qy
    )
    return quantized_pos


def unravel_xy(pos, shape):
    # convert (x+W*y) back to 2d (x,y) coordinates
    return np.unravel_index(pos, shape)[0].base[:, ::-1].copy()


def reciprocal_1d(corres_1_to_2, corres_2_to_1, ret_recip=False):
    is_reciprocal1 = corres_2_to_1[corres_1_to_2] == np.arange(len(corres_1_to_2))
    pos1 = is_reciprocal1.nonzero()[0]
    pos2 = corres_1_to_2[pos1]
    if ret_recip:
        return is_reciprocal1, pos1, pos2
    return pos1, pos2


def extract_correspondences_from_pts3d(
    view1, view2, target_n_corres, rng=np.random, ret_xy=True, nneg=0
):
    view1, view2 = to_numpy((view1, view2))
    # project pixels from image1 --> 3d points --> image2 pixels
    shape1, corres1_to_2 = reproject_view(view1["pts3d"], view2)
    shape2, corres2_to_1 = reproject_view(view2["pts3d"], view1)

    # compute reciprocal correspondences:
    # pos1 == valid pixels (correspondences) in image1
    is_reciprocal1, pos1, pos2 = reciprocal_1d(
        corres1_to_2, corres2_to_1, ret_recip=True
    )
    is_reciprocal2 = corres1_to_2[corres2_to_1] == np.arange(len(corres2_to_1))

    if target_n_corres is None:
        if ret_xy:
            pos1 = unravel_xy(pos1, shape1)
            pos2 = unravel_xy(pos2, shape2)
        return pos1, pos2

    available_negatives = min((~is_reciprocal1).sum(), (~is_reciprocal2).sum())
    target_n_positives = int(target_n_corres * (1 - nneg))
    n_positives = min(len(pos1), target_n_positives)
    n_negatives = min(target_n_corres - n_positives, available_negatives)

    if n_negatives + n_positives != target_n_corres:
        # should be really rare => when there are not enough negatives
        # in that case, break nneg and add a few more positives ?
        n_positives = target_n_corres - n_negatives
        assert n_positives <= len(pos1)

    assert n_positives <= len(pos1)
    assert n_positives <= len(pos2)
    assert n_negatives <= (~is_reciprocal1).sum()
    assert n_negatives <= (~is_reciprocal2).sum()
    assert n_positives + n_negatives == target_n_corres

    valid = np.ones(n_positives, dtype=bool)
    if n_positives < len(pos1):
        # random sub-sampling of valid correspondences
        perm = rng.permutation(len(pos1))[:n_positives]
        pos1 = pos1[perm]
        pos2 = pos2[perm]

    if n_negatives > 0:
        # add false correspondences if not enough
        def norm(p):
            return p / p.sum()

        pos1 = np.r_[
            pos1,
            rng.choice(
                shape1[0] * shape1[1],
                size=n_negatives,
                replace=False,
                p=norm(~is_reciprocal1),
            ),
        ]
        pos2 = np.r_[
            pos2,
            rng.choice(
                shape2[0] * shape2[1],
                size=n_negatives,
                replace=False,
                p=norm(~is_reciprocal2),
            ),
        ]
        valid = np.r_[valid, np.zeros(n_negatives, dtype=bool)]

    # convert (x+W*y) back to 2d (x,y) coordinates
    if ret_xy:
        pos1 = unravel_xy(pos1, shape1)
        pos2 = unravel_xy(pos2, shape2)
    return pos1, pos2, valid