Spaces:
Runtime error
Runtime error
# Copyright (C) 2022-present Naver Corporation. All rights reserved. | |
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). | |
""" | |
Script to generate image pairs for a given scene reproducing poses provided in a metadata file. | |
""" | |
import os | |
from datasets.habitat_sim.multiview_habitat_sim_generator import ( | |
MultiviewHabitatSimGenerator, | |
) | |
from datasets.habitat_sim.paths import SCENES_DATASET | |
import argparse | |
import quaternion | |
import PIL.Image | |
import cv2 | |
import json | |
from tqdm import tqdm | |
def generate_multiview_images_from_metadata( | |
metadata_filename, | |
output_dir, | |
overload_params=dict(), | |
scene_datasets_paths=None, | |
exist_ok=False, | |
): | |
""" | |
Generate images from a metadata file for reproducibility purposes. | |
""" | |
# Reorder paths by decreasing label length, to avoid collisions when testing if a string by such label | |
if scene_datasets_paths is not None: | |
scene_datasets_paths = dict( | |
sorted(scene_datasets_paths.items(), key=lambda x: len(x[0]), reverse=True) | |
) | |
with open(metadata_filename, "r") as f: | |
input_metadata = json.load(f) | |
metadata = dict() | |
for key, value in input_metadata.items(): | |
# Optionally replace some paths | |
if key in ("scene_dataset_config_file", "scene", "navmesh") and value != "": | |
if scene_datasets_paths is not None: | |
for dataset_label, dataset_path in scene_datasets_paths.items(): | |
if value.startswith(dataset_label): | |
value = os.path.normpath( | |
os.path.join( | |
dataset_path, os.path.relpath(value, dataset_label) | |
) | |
) | |
break | |
metadata[key] = value | |
# Overload some parameters | |
for key, value in overload_params.items(): | |
metadata[key] = value | |
generation_entries = dict( | |
[ | |
(key, value) | |
for key, value in metadata.items() | |
if not (key in ("multiviews", "output_dir", "generate_depth")) | |
] | |
) | |
generate_depth = metadata["generate_depth"] | |
os.makedirs(output_dir, exist_ok=exist_ok) | |
generator = MultiviewHabitatSimGenerator(**generation_entries) | |
# Generate views | |
for idx_label, data in tqdm(metadata["multiviews"].items()): | |
positions = data["positions"] | |
orientations = data["orientations"] | |
n = len(positions) | |
for oidx in range(n): | |
observation = generator.render_viewpoint( | |
positions[oidx], quaternion.from_float_array(orientations[oidx]) | |
) | |
observation_label = f"{oidx + 1}" # Leonid is indexing starting from 1 | |
# Color image saved using PIL | |
img = PIL.Image.fromarray(observation["color"][:, :, :3]) | |
filename = os.path.join(output_dir, f"{idx_label}_{observation_label}.jpeg") | |
img.save(filename) | |
if generate_depth: | |
# Depth image as EXR file | |
filename = os.path.join( | |
output_dir, f"{idx_label}_{observation_label}_depth.exr" | |
) | |
cv2.imwrite( | |
filename, | |
observation["depth"], | |
[cv2.IMWRITE_EXR_TYPE, cv2.IMWRITE_EXR_TYPE_HALF], | |
) | |
# Camera parameters | |
camera_params = dict( | |
[ | |
(key, observation[key].tolist()) | |
for key in ("camera_intrinsics", "R_cam2world", "t_cam2world") | |
] | |
) | |
filename = os.path.join( | |
output_dir, f"{idx_label}_{observation_label}_camera_params.json" | |
) | |
with open(filename, "w") as f: | |
json.dump(camera_params, f) | |
# Save metadata | |
with open(os.path.join(output_dir, "metadata.json"), "w") as f: | |
json.dump(metadata, f) | |
generator.close() | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--metadata_filename", required=True) | |
parser.add_argument("--output_dir", required=True) | |
args = parser.parse_args() | |
generate_multiview_images_from_metadata( | |
metadata_filename=args.metadata_filename, | |
output_dir=args.output_dir, | |
scene_datasets_paths=SCENES_DATASET, | |
overload_params=dict(), | |
exist_ok=True, | |
) | |